Abstract:
Provided are a composition for forming a conductive pattern, which enables formation of a fine conductive pattern onto a variety of polymer resin products or resin layers by a very simplified process, a method of forming the conductive pattern using the same, and a resin structure having the conductive pattern. The composition for forming the conductive pattern includes a polymer resin; and a non-conductive metal compound including a coinage metal element [Group 11 (Group IB)] and a non-metal element, the non-conductive metal compound having a three-dimensional structure formed by vertex sharing of tetrahedrons including the Group 11 metal element, in which a metal core including the Group 11 metal element or an ion thereof is formed from the non-conductive metal compound by electromagnetic irradiation.
Abstract:
A printed circuit board includes a laminate substrate. The laminate substrate includes catalytic material that resists metal plating except where a surface of the catalytic material is ablated. Metal traces are formed within in trace channels within the laminate substrate. The channels extend below the surface of the catalytic material.
Abstract:
A package structure includes a lead frame, a selective-electroplating epoxy compound, conductive vias and a patterned circuit layer. The lead frame includes a metal stud array having metal studs. The selective-electroplating epoxy compound covers the metal stud array. The selective-electroplating epoxy compound includes non-conductive metal complex. The conductive vias are directly embedded in the selective electroplating epoxy compound to be respectively connected to the metal studs and extended to a top surface of the selective-electroplating epoxy compound. Each of the conductive vias includes a lower segment connected to the corresponding metal stud and an upper segment connected to the lower segment and extended to the top surface, and a smallest diameter of the upper segment is greater than a largest diameter of the lower segment. The patterned circuit layer is directly disposed on the top surface and electrically connected to the conductive vias.
Abstract:
The present invention relates to a composition for forming a conductive pattern, which is able to form a fine conductive pattern onto a variety of polymer resin products or resin layers by a very simple process, a method for forming the conductive pattern using the same, and a resin structure having the conductive pattern. The composition for forming the conductive pattern, including a polymer resin; and a non-conductive metal compound containing a first metal and a second metal, in which the non-conductive metal compound has a three-dimensional structure containing a plurality of first layers that contains at least one metal of the first and second metals and has edge-shared octahedrons two-dimensionally connected to each other and a second layer that contains a metal different from that of the first layer and is arranged between the neighboring first layers; and a metal core containing the first or second metal or an ion thereof is formed from the non-conductive metal compound by electromagnetic irradiation.
Abstract:
A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material. A layer of catalytic adhesive coats walls within the hole. The patterned metal layer is placed over the catalytic adhesive within the hole.
Abstract:
An electronic device housing includes a plastic substrate. The plastic substrate includes a first surface. The electronic device housing further includes an activating layer formed on the first surface. The activating layer contains metal powder. The activating layer defines a recessed portion. Some of the metal powder is partially exposed on the surface of the recessed portion. Some of metal powder is partially inserted into the plastic substrate corresponding to the recessed portion. The electronic device housing further includes an antenna layer formed on the recessed portion. The antenna layer is a metal layer. A method for manufacturing the electronic device housing is also disclosed.
Abstract:
A method for producing an electrically conductive structure, e.g., a conducting track, on a non-conductive substrate material, having an additive (1) having at least one metal compound. The substrate material may be irradiated using a laser to selectively activate the metal compounds, for example inorganic metal compounds, contained in the additive (1). The metal seeds formed by the activation are then metallized to create the electrically conductive structure on the substrate material. Because the additive (1) has a preferably full-surface coating before the additive is introduced into the substrate material, such that the additive (1) is reduced and the coating is oxidized by the laser activation, the reaction partners necessary for the required chemical reaction with the additive (1) are provided by the coating. Because of the thereby significantly reduced interaction with the substrate material, the limitation to certain plastics or plastic groups also is lifted.
Abstract:
A package structure includes a selective-electroplating epoxy compound, a first patterned circuit layer, second patterned circuit layers, metal studs, contact pads and conductive vias. The selective-electroplating epoxy compound includes cavities, a first surface and a second surface. The cavities disposed on the first surface in array arrangement. The selective-electroplating epoxy compound is formed by combining non-conductive metal complex. The metal studs are disposed in the cavities respectively and protruded from the first surface. The first patterned circuit layer is directly disposed on the first surface. The selective-electroplating epoxy compound exposes a top surface of the patterned circuit layer. The top surface is lower than or coplanar with the first surface. The second patterned circuit layers are directly disposed on the second surface. The conductive vias are disposed at the selective-electroplating epoxy compound to electrically connect the second patterned circuit layers to the corresponding metal studs.
Abstract:
A printed circuit board includes a laminate substrate. The laminate substrate includes catalytic material that resists metal plating except where a surface of the catalytic material is ablated. Metal traces are formed within in trace channels within the laminate substrate. The channels extend below the surface of the catalytic material.
Abstract:
This invention relates to products of aqueous and other chemical synthetic routes for encapsulation of a core material with an inorganic shell and finished compositions of a core-shell particulate material for application in thermoplastic, thermoset, and coatings resins prior to compounding or application or subsequent thermal processing steps. Disclosed is a composition of particles containing a shell of inorganic oxides or mixed-metal inorganic oxides and a core material of complex inorganic colored pigment, laser direct structuring additives, laser marking, or other beneficial metal oxides, metal compounds, or mixed-metal oxide materials, wherein the shell material is comprised of any single oxide or combination of oxides is taught. Preferred elements of composition for the shell are oxides and silicates of B, Ni, Zn, Al, Zr, Si, Sn, Bi, W, Mo, Cr, Mg, Mn, Ce, Ti, and Ba (or mixtures thereof). Applications may include, but are not limited to, coatings or plastic articles or materials for molded interconnect devices, durable goods, housings, assemblies, devices, and articles that are to be exposed to additional thermal processing. The resulting core-shell materials function in plastic and coatings formulations by minimizing or eliminating detrimental interactions with the resins and metal containing additives resulting in loss of mechanical properties.