Abstract:
A mounting structure of a semiconductor package can improve resistance against thermal and mechanical external force. The mounting structure of a semiconductor package establishes electrical connection of a pad on a printing circuit board to a connection wiring by soldering the semiconductor package. The pad may be integrally formed with a via. The soldering may be performed by penetrating a part of solder within the via so that the connection wiring is connected to the pad through the via at a layer different from a layer of the pad.
Abstract:
A semiconductor chip has an active surface with electrodes thereon and an insulating layer covering the active surface and having through holes therein through which corresponding electrodes are exposed. Rewiring circuits are formed on the insulating layer, each having a first terminal end extending through a corresponding through hole and electrically connected to a respective electrode and a second terminal end comprising a conductive pad. Respective inner bumps are formed on the second terminal ends of the rewiring circuits. An insulating film is formed on the rewiring circuits and exposed surfaces of the insulating layer and through holes are formed therein corresponding to the conductive pads and into which respective inner bumps are inserted. A respective outer bump is superimposed on each inner bump in the insulating film and projects beyond an exposed surface of the insulating film remote from the semiconductor chip. In an alternative, inner bumps are omitted and the outer bumps are directly superimposed on the conductive pads in the corresponding through holes. A method of making the semiconductor device provides for superimposing outer bumps either directly on the respective conductive pads in the corresponding through holes, where inner bumps are not employed, or superimposing same on the respective inner bumps after superimposing the inner bumps on the respective conductive pads.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
A printed circuit board for use in testing electrical components having distributed two-dimensional connection contacts. The printed circuit board has an electrically insulating insulation layer provided with through-holes. In the region of a respective through-hole, an electrically conductive contact pad is provided on a side surface of the insulation layer. Proceeding from a respective contact pad, a respective conductor track extends to an edge region of the insulation layer.
Abstract:
In an electronic-component mounting structure, an electronic component (2) has a surface. First electrodes (1) provided on the surface of the electronic component (2) are arranged in a first array. Second electrodes (3) provided on a base board (4) are arranged in a second array corresponding to the first array. The second electrodes (3) correspond to the first electrodes (1) respectively. Solder bumps (9) connect the first electrodes (1) and the second electrodes (3) respectively. The first electrodes (1) include first outermost electrodes (1b) located in an outer area of the first array. The second electrodes (3) include second outermost electrodes (3b, 3c) located in an outer area of the second array. The second outermost electrodes (3b, 3c) correspond to the first outermost electrodes (1b) respectively. An outer edge (X1, Z1) of each of the second outermost electrodes (3b, 3c) extends outward of an outer edge (Y1) of a corresponding first outermost electrode (1b) with respect to the first and second arrays. A distance between an outer edge (X1, Z1) of each of the second outermost electrodes (3b, 3c) and an outer edge (Y1) of a corresponding first outermost electrode (1b) is greater than a distance between an inner edge (X2, Z2) of the second outermost electrode (3b, 3c) and an inner edge (Y2) of the corresponding first outermost electrode (1b) with respect to the first and second arrays.
Abstract:
A connection of an electrical terminal 13 to a conductor track 5 applied to a glass or glass ceramic plate 1 is to be resistant to temperature change and traction and conductive. For this purpose an electrically conductive connecting element 11 is ultrasonically welded to the composite consisting of the conductor track 5 and plate 1. The connecting element 11 extends to the terminal 13 which is fastened to the plate 1.
Abstract:
An interposer having an array of contact structures for making temporary electrical contact with the leads of a chip package. The contact structures may make contact with the leads substantially as close as desired to the body of the chip package. Moreover, the contact structures can be adapted for making contact with leads having a very fine pitch. In a first embodiment, the contact structures include raised members formed over a body of the interposer. A conductive layer is formed over each of the raised members to provide a contact surface for engaging the leads of the chip package. In another embodiment, the raised members are replaced with depressions formed into the interposer. A conductive layer is formed on an inside surface of each depression to provide a contact surface for engaging the leads of the chip package. Moreover, any combination of raised members and depressions may be used.
Abstract:
This invention is to provide a printed circuit board suitable for the high densification of mounting parts using a solder bump and for the improvements of connection reliability and mounting reliability, and proposes a printed circuit board comprising a mounting pad provided with a solder bump by covering a mounting surface with a solder resist, characterized in that a position of forming the solder bump is arranged so as to match with a position of a viahole, or a size of opening portion formed in the solder resist is made larger than a size of a land of the viahole so as not to overlap the solder resist with the viahole.
Abstract:
Described is a method for minimizing switching noise in the high- and mid-frequency range on printed circuit cards or boards by means of a plurality of surface mounted decoupling capacitors. A novel configuration and implementation of capacitor pads including the connecting vias is also presented. As a result the parasitic inductance of the pads and vias can be significantly reduced. Thus the effectiveness of the decoupling capacitors in the mid and high frequency range can be increased, the voltage drop can be reduced and the system performance can be increased. Several design rules for the new pad via configuration lead to the significant reduction of the parasitic inductance. The proposal is especially important for high integrated system designs on boards and cards combined with increased cycle times.
Abstract:
An adhesion pad for adhering a semiconductor chip or a ball grid array module to a supporting substrate includes a stepped or tapered structure. The structure is composed of at least one solder wettable metal or alloy layer having solder deposited thereon. The stepped or tapered structure prevents a fatigue crack from propagating in the X-Y plane above the adhesion pad.