Abstract:
In one embodiment the present disclosure is directed to a silica-titania glass with an internal transmission of >90%/cm at wavelengths from 340 nm to 840 nm. In another embodiment the internal transmission is >93%/cm at wavelengths from 340 nm to 840 nm. In a further embodiment the internal transmission is >95%/cm at wavelengths from 340 nm to 840 nm. In another embodiment the disclosure is directed to a silica-titania glass with an overall transmission through an optic made of the glass is >84% at wavelengths from 340 nm to 840 nm. In another embodiment overall transmission through an optic made of the glass is >86% at wavelengths from 340 nm to 840 nm. In a further embodiment the overall transmission through an optic made of the glass is >88% at wavelengths from 330 nm to 840 nm. In a further embodiment the silica-titania glass has a Ti+3 concentration level [Ti3+] less than 3 ppm by weight.
Abstract:
The present invention relates to a quartz glass blank for an optical component for transmitting radiation of a wavelength of 15 nm and shorter, the blank consisting of highly pure quartz glass, doped with titanium and/or fluorine, which is distinguished by an extremely high homogeneity. The homogeneity relates to the following features: a) micro-inhomogeneities caused by a local variance of the TiO2 distribution (
Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
An object of the present invention is to provide a TiO2-containing quartz glass substrate which, when used as a mold base for nanoimprint lithography, can form a concavity and convexity pattern having a dimensional variation falling within ±10%. The invention relates to a TiO2-containing quartz glass substrate: in which a coefficient of thermal expansion in the range of from 15 to 35° C. is within ±200 ppb/° C.; a TiO2 concentration is from 4 to 9 wt %; and a TiO2 concentration distribution, in a substrate surface on the side where a transfer pattern is to be formed, is within ±1 wt %.
Abstract translation:本发明的目的是提供一种含TiO 2的石英玻璃基板,其用作纳米压印光刻用的模具基底时,可以形成尺寸变化在±10%以内的凹凸图案。 本发明涉及一种含TiO 2的石英玻璃基板,其中15至35℃范围内的热膨胀系数在±200ppb /℃以内。 TiO 2浓度为4〜9重量%。 并且在要形成转印图案的一侧的基板表面中的TiO 2浓度分布在±1重量%以内。
Abstract:
Process for preparing a silicon dioxide granule having a specific surface area of less than 1 m2/g and a proportion of impurities of less than 50 ppm, in which a) a silicon dioxide powder with a tamped density of 15 to 190 g/l, b) is compacted to slugs which are subsequently crushed, the slug fragments having a tamped density of 210 to 800 g/l, and c) the slug fragments are treated with one or more reactive compounds at 400 to 1100° C.
Abstract:
A substrate that is suitable for an EUV mask or an EUV mask blank and excellent in flatness, is provided.A substrate for an EUV mask blank, which is made of a silica glass containing from 1 to 12 mass % of TiO2, wherein the surface roughness (rms) in a surface quality area of the substrate is at most 2 nm, and the maximum variation (PV) of the stress in the surface quality area of the substrate is at most 0.2 MPa.
Abstract:
The claimed invention relates to a process for producing an optical material for EUV lithography, wherein the optical material contains a silica glass having a TiO2 concentration of from 3 to 12 mass % and a hydrogen molecule content of less than 5×1017 molecules/cm3 in the glass. The process including coating a multilayer film on the silica glass by ion beam sputtering.
Abstract translation:所要求保护的发明涉及一种用于制造用于EUV光刻的光学材料的方法,其中所述光学材料包含玻璃中TiO 2浓度为3至12质量%且氢分子含量小于5×10 17分子/ cm 3的二氧化硅玻璃 。 该方法包括通过离子束溅射在二氧化硅玻璃上涂覆多层膜。
Abstract:
It is to obtain a silica glass suitable as a material for an optical material constituting an optical system to be used for EUVL, which has a low coefficient of thermal expansion from 0 to 100° C., and on which formation of concave defects is suppressed in a polishing step to achieve a high level of flatness.A silica glass containing from 0.1 to 10 mass % of Sn calculated as SnO2 and from 3 to 10 mass % of Ti calculated as TiO2, which has a homogeneity of the coefficient of thermal expansion from 0 to 100° C. to the temperature of from 50 to 200 ppb/° C., a coefficient of thermal expansion from 0 to 100° C. of 0±250 ppb/° C., and a Vickers hardness of at most 650.
Abstract:
A low expansion glass substrate includes titania and silica and has a thermal expansivity with an average gradient less than 1 ppb/° C./° C. in a temperature range of 19° C. to 25° C.
Abstract:
The invention is directed to a low expansion glass with reduced striae, the glass have a point-to-point variation in titania content is 0.1 wt % or less through its thickness and a CTE of 0±3 ppb/° C. throughout the temperature range 5-35° C. The invention is further directed to a method for producing the low expansion glass by using a method in which the time for repetition of the oscillation patterns used in the process are 10 minutes or less. In addition, the low expansion glass of the invention can have striae further reduced by heat-treating the glass at temperatures above 1600° C. for a time in the range of 48-160 hours. The invention is also directed to optical elements suitable for extreme ultraviolet lithography, which elements are made of a titania-containing silica glass having a titania content in the range of 5-10 wt. %, a polished and shaped surface have a peak-to-valley roughness of less than 10 nm, an average variation in titania content of less than ±0.1 wt. % as measured through the vertical thickness of the glass and a coefficient of thermal expansion of 0±3 ppb/° C. throughout the temperature range 5-35° C.