Abstract:
A method for operating a laser spectrometer includes passing light of a semiconductor laser through a gas mixture containing a gas component and through an etalon structure onto a detector. The method also includes varying an injection current of the laser based on a predefined current-time function in order to tune the wavelength of the laser in a tuning range using a specific absorption line of the gas component. The method further includes modulating the function with a modulation signal having a frequency and alternately a first modulation amplitude and a second modulation amplitude. The method also includes evaluating a detector signal generated by the detector for determining (1) the concentration of the gas component upon the modulation with the first modulation amplitude and (2) the wavelength stabilization of the laser upon the modulation with the second modulation amplitude at the second harmonic of the frequency.
Abstract:
A sample cell for a spectrometer, and a spectrometer using such a sample cell. The sample cell may include a housing having a reflective inner surface which is at least a section of a spheroid bounding a cavity. A lens system receives electromagnetic radiation from a source and directs a converging beam through a port in the cavity to a focal point inside the cavity, such that the beam undergoes multiple reflections on the inner surface before exiting the cavity. Arrangements for adjusting beam cross-sectional area and angle are optionally provided. Methods which can be performed on such an apparatus and computer program products for performing such methods are further provided.
Abstract:
A method of manufacturing photo-semiconductor device that has a photoconductive semiconductor film provided with electrodes and formed on a second substrate, the semiconductor film being formed by epitaxial growth on a first semiconductor substrate different from the second substrate, the second substrate being also provided with electrodes, the electrodes of the second substrate and the electrodes of the photoconductive semiconductor film being held in contact with each other.
Abstract:
A THz frequency range antenna is provided which comprises: a semiconductor film (3) having a surface adapted to exhibit surface plasmons in the THz frequency range. The surface of the semiconductor film (3) is structured with an antenna structure (4) arranged to support localized surface plasmon resonances in the THz frequency range.
Abstract:
An apparatus for a non-invasive sensing of biological analytes in a sample includes an optics system having at least one radiation source and at least one radiation detector; a measurement system operatively coupled to the optics system; a control/processing system operatively coupled to the measurement system and having an embedded software system; a user interface/peripheral system operatively coupled to the control/processing system for providing user interaction with the control/processing system; and a power supply system operatively coupled to the measurement system, the control/processing system and the user interface system for providing power to each of the systems. The embedded software system of the control/processing system processes signals obtained from the measurement system to determine a concentration of the biological analytes in the sample.
Abstract:
Provided is a spectrum detector capable of being miniaturized and which does not require complicated optical axis alignment. The spectrum detector of the present invention comprises: a substrate; a photodetector formed on the substrate and including a semiconductor having a plurality of convex portions; and a wavelength detection circuit for detecting a wavelength of light transmitted through the plurality of convex portions, from light incident on the photodetector. According to the present invention, a small-sized spectrum detector can be provided which can easily detect a peak wavelength distribution included in light of an unknown wavelength, without the use of optical equipment such as a grating or prism, thus dispensing with the need for the optical axis alignment of a complex optical system.
Abstract:
The present invention provides a terahertz wave measuring apparatus and measurement method capable of improving the quantitativeness of obtained frequency spectrum information. In a measurement method in which a terahertz wave measuring apparatus is used, the terahertz wave measuring apparatus measures a time waveform of a terahertz wave relating to a calibration sample whose shape of a calibration spectrum is already known and obtains a measurement spectrum by transforming the time waveform. The calibration spectrum and the measurement spectrum are compared, and, on the basis of results of the comparison, time intervals of measurement data that form a time waveform are adjusted in order to calibrate the terahertz wave measuring apparatus.
Abstract:
A gas detection system with an inner ring cavity fiber laser using saturated absorption optical fiber is provided. The system comprising a ring fiber laser consisted of a pump source, a wavelength division multiplexer, a first active optical fiber, a first coupler, a fiber Bragg grating and a second coupler connected successively; an optical isolator coupled between said first active optical fiber and said first coupler; a second active grating connected between said fiber Bragg grating and said first coupler; a detection gas chamber connected between said first coupler and said second coupler; a first photoelectric detector for detecting the laser intensity outputted from said ring fiber laser to generate a first light intensity signal; a second photoelectric detector for receiving the intensity measuring beam passing through the detection gas chamber to generate a second light intensity signal; and a feedback control unit.
Abstract:
Novel systems and methods for performing treatment (e.g., coloration) of keratinous fibers are disclosed. The methods and systems utilize one or more of a dispensing device which is configured to provide customized composition for treating keratinous fibers (e.g., a coloring composition), optionally formed from tablets; an optical reader, for obtaining sufficient characteristics of the keratinous fibers to make a realistic prediction of the outcome of a treatment (e.g., coloring treatment); a computational units for predicting an outcome of a treatment, optionally being interfaced with the dispensing device and for selecting a customized treatment; and tablet formulations which are useful in preparing customized composition for treating keratinous fibers. Further disclosed are rapidly disintegrating tablets for use in the preparation of compositions for treating keratinous fibers.
Abstract:
An apparatus is configured to measure various properties of sample in a sample chamber such as, for example, water activity. The apparatus includes a tunable diode laser that emits laser radiation into the sealed chamber without passing through the air outside the sample chamber or a wall of the sample chamber. The laser radiation only passes through the gaseous mixture in the sample chamber. A temperature sensor such as an infrared thermometer is positioned to measure the temperature of a sample in the sample chamber. The apparatus may be configured to include a plurality of sample containers each of which includes a sealed sample chamber. The sample containers may be automatically fed through the apparatus and analyzed with the tunable diode laser without any operator input or interaction.