Abstract:
A dual scanning and FTIR system for application in the Terahertz and broadband blackbody frequency range including sources for providing Thz and broadband blackbody range and electromagnetic radiation, at least one detector of electromagnetic radiation in the THZ and broadband blackbody ranges, and at least one rotating element between the source and detector.
Abstract:
The present invention relates to a system and method for measuring a wavelength-resolved state of polarization, for calculating differential group delay of an optical signal under analysis (1) by means of taking multiple measurements of the spectrum of the signal under analysis (1) with spectral filtering means (3) with an optical output the power of which depends on the polarization of the input. The polarization at the input of the spectral filtering means (3) is modified by means of a polarization transformer (2) which sequentially selects a plurality of output states of polarization. The spectral filtering means (3) can comprise a filter based on stimulated Brillouin scattering amplification (10) simultaneously combining wavelength discrimination and polarization discrimination.
Abstract:
A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.
Abstract:
A system for measuring the rotation angle of optical active substances has a light source, a polarization generation unit; a polarization analyzing unit; a signal generating unit, respectively and electrically coupled to the polarization generation unit and the polarization analyzing unit; a signal processing unit, electrically coupled to the electric signal generating unit; wherein the light source is enabled to emit a beam toward the polarization generation unit for enabling the beam to be polarized into an incident polarized beam while being projected and traveled in an optical path passing through an optical active substance so as to be converted into a emerging beam; and the polarization analyzing unit is positioned to receive and analyze the emerging beam so as to generate a signal to be received and processed by the signal processing unit.
Abstract:
An optical apparatus has a light detecting section which detects light and emits transmitted light where linearly polarized light, which is converted by a polarizing section, is transmitted through a subject. In addition, the optical apparatus has an orthogonal separating section which orthogonally separates the emitted light from the light detecting section and a light reception section which receives light which is orthogonally separated by the orthogonal separating section. A calculation apparatus outputs a rotation control signal to a rotation apparatus and rotation controls the light detecting section so that the rotation plane is orthogonal with regard to an optical path of the transmitted light. Then, the calculation apparatus measures the polarization state of the transmitted light, which is transmitted through the subject S using the intensity with which the light, is received by the light receiving section.
Abstract:
Described herein is device configured to be a solar-blind UV detector comprising a substrate; a plurality of pixels; a plurality of nanowires in each of the plurality of pixel, wherein the plurality of nanowires extend essentially perpendicularly from the substrate.
Abstract:
Aspects of the subject technology relate to methods and systems for removing haze from an input image. The system includes a polarimeter configured to receive an input image, the input image comprising haze corresponding to light scatter. The polarimeter is further configured to produce plural Stokes values based on received input image. The system also includes a signal processor coupled to the polarimeter. The signal processor is configured to determine a peak angle and a valley angle for the input image based on the plural Stokes values, where the peak angle corresponds to an angle at which the input image has the most amount of light scatter passing therethrough, and the valley angle corresponds to an angle at which the input image has the least amount of light scatter passing therethrough. The signal processor is further configured to perform removal of the haze from the input image based on the determined peak and valley angles.
Abstract:
A terahertz ellipsometer, the basic preferred embodiment being a sequential system having a backward wave oscillator (BWO); a first rotatable polarizer that includes a wire grid (WGP1); a rotating polarizer that includes a wire grid (RWGP); a stage (STG) for supporting a sample (S); a rotating retarder (RRET) comprising first (RP), second (RM1), third (RM2) and fourth (RM3) elements; a second rotatable polarizer that includes a wire grid (WGP2); and a Golay cell detector (DET).
Abstract:
Described herein is device configured to be a solar-blind UV detector comprising a substrate; a plurality of pixels; a plurality of nanowires in each of the plurality of pixel, wherein the plurality of nanowires extend essentially perpendicularly from the substrate.
Abstract:
Described herein is a device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light.