Abstract:
A system and method for the fabrication of high reliability capacitors (1011), inductors (1012), and multi-layer interconnects (1013) (including resistors (1014)) on various thin film hybrid substrate surfaces (0501) is disclosed. The disclosed method first employs a thin metal layer (0502) deposited and patterned on the substrate (0501). This thin patterned layer (0502) is used to provide both lower electrodes for capacitor structures (0603) and interconnects (0604) between upper electrode components. Next, a dielectric layer (0705) is deposited over the thin patterned layer (0502) and the dielectric layer (0705) is patterned to open contact holes (0806) to the thin patterned layer. The upper electrode layers (0907, 0908, 1009, 1010) are then deposited and patterned on top of the dielectric (0705).
Abstract:
An object of the present invention is to provide a laminate for forming a capacitor layer for a printed wiring board which is capable of ensuring a higher capacitance and an inner layer core material using the laminate for example. In order to achieve this object, a material for forming a capacitor layer comprising a three-layered structure of an aluminum layer 2/a modified alumina barrier layer 3/an electrode copper layer 4 is used, such as a laminate 1a for forming a capacitor layer in which the above described modified alumina barrier layer 3 is obtained through subjecting one side of an aluminum plate or aluminum foil to an anodic treatment to form an alumina barrier layer as a uniform oxide layer and then subjecting the alumina material with the above described alumina barrier layer formed thereon to a boiling and modifying treatment in water and the above described modified aluminum barrier layer 3 is used as a dielectric layer.
Abstract:
A multilayered circuit board and a method of forming the multilayer circuit board are provided. In a first circuit forming process P1p, a first circuit 12a is formed on an insulating board 11a with a conductor 12a; in a circuit embedding process P2p, the first circuit 12a is embedded in the insulating board 11a so as to have a predetermined surface flatness S and a predetermined parallelism P; in a masking process P4p, a pilot hole 15, 20 for a via hole 4, 4a is masked at a part of the surface of the circuit 12a; in an insulating layer forming process P5p, an insulating material 11b is applied as a layer to the surface except the mask 14; in an insulating material layer flattening process, the surface of the insulating material layer 11b is flattened so as to have the predetermined surface flatness S and the predetermined parallelism P; and in a pilot hole forming process, the mask 14 is removed.
Abstract:
An assembly includes a suspension, a magnetic head assembly, first and second write wires and first and second read wires wherein the magnetic head assembly includes a write head and a read head with the first and second write wires connected to the write head and the first and second read wires connected to the read head and wherein the first and second insulative sheaths are disposed about the first and second read wires and first and second conductive sheaths are disposed about the first and second insulative sheaths. In another aspect of the invention, third and fourth insulative sheaths are disposed about the first and second write wires and third and fourth conductive sheaths are disposed about the third and fourth insulative sheaths.
Abstract:
A power up test method and apparatus for a liquid crystal display (LCD) panel are disclosed. A power up test panel is used to perform the power up test on a LCD panel which greatly simplifies the test and reduces cost. The power up test panel includes a plurality of test electrodes formed on a substrate. The plurality of test electrodes corresponds one-on-one to a plurality of input electrodes on the LCD panel. The power up test panel makes electrical communication with a host system circuit which generates driving signals for sending to the power up test panel through a flexible film. During the power up test, the electrodes on the power up test panel and the input electrodes are matched and a pressure is applied for performing the electrical signal communication test of the LCD panel. The method is particularly suitable for the power up test of a high resolution LCD panel which has small pitch distance between input electrodes.
Abstract:
A multi-layer circuit board comprises: an insulating layer having upper and lower surfaces thereof, and wiring patterns arranged on the upper and lower surfaces of the insulating layer. A ferroelectric layer has a dieletric constant larger than that of the insulating layer and has upper and lower surfaces. The ferroelectric layer is arranged in the insulating layer in such a manner that the upper and lower surfaces of the ferroelectric layer coincide with the upper and lower surfaces of the insulating layer, respectively. A pair of electrode films are formed on the upper and lower surfaces of the ferroelectric layer, respectively, to define a capacitor incorporated in the multi-layer circuit board.
Abstract:
Electrode layers (1, 2) are arranged on both sides of a dielectric layer (3) facing each other so as to configure a capacitor. Lead electrodes (4, 5) are formed in the electrode layers (1, 2). A penetrating electrode (6) that is insulated from the electrode layers (1, 2) is formed. An electronic component (10) configured in this manner is mounted on a wiring board, and a semiconductor chip can be mounted thereon. Along with connecting the semiconductor chip to the wiring board via the penetrating electrode (6), the semiconductor chip or the wiring board is connected to the lead electrodes (4, 5). In this manner, while suppressing the size increase of a mounted area, the capacitor or the like can be arranged near the semiconductor chip. Thus, the semiconductor chip is driven with high frequency more easily.
Abstract:
Electrode layers (1, 2) are arranged on both sides of a dielectric layer (3) facing each other so as to configure a capacitor. Lead electrodes (4, 5) are formed in the electrode layers (1, 2). A penetrating electrode (6) that is insulated from the electrode layers (1, 2) is formed. An electronic component (10) configured in this manner is mounted on a wiring board, and a semiconductor chip can be mounted thereon. Along with connecting the semiconductor chip to the wiring board via the penetrating electrode (6), the semiconductor chip or the wiring board is connected to the lead electrodes (4, 5). In this manner, while suppressing the size increase of a mounted area, the capacitor or the like can be arranged near the semiconductor chip. Thus, the semiconductor chip is driven with high frequency more easily.
Abstract:
A multilayer wiring board comprises: a metal substrate as a core, a condenser dielectric layer formed to cover the metal layer, and a condenser electrode metal layer formed to cover the condenser dielectric layer, so that a condenser is defined by the metal substrate, the condenser dielectric layer and the condenser electrode metal layer. Integral with the structure of the wiring board is a discrete capacitor component with the metal substrate and the condenser electrode forming the two plates thereof with the dielectric layer there between. The condenser dielectric layer is provided with a first contact hole to communicate with the metal substrate and the condenser electrode metal layer is provided with a second contact hole to communicate with the first contact hole, the diameter of the second contact hole being larger than that of the first contact hole. An insulating layer is formed on the condenser electrode metal layer and is provided with a via hole to communicate with the metal substrate through the second and first contact holes. A metal substrate contact metal layer formed on an inner wall of the via hole, so that the metal substrate contact metal layer comes into electrical contact with the metal substrate.
Abstract:
A substrate with hermetically sealed vias extending from one side of the substrate to another and a method for fabricating same. The vias may be filled with a conductive material such as, for example, a fritless ink. The conductive path formed by the conductive material aids in sealing one side of the substrate from another. One side of the substrate may include a sensing element and another side of the substrate may include sensing electronics.