Abstract:
Embodiments include electronic device substrates and methods for forming the same. A method for forming a package comprising a multilayer substrate includes forming a stack of a plurality of dielectric layers comprising a ceramic material, the stack including upper and lower dielectric layers. The method also includes providing a plurality of metallization lines on the dielectric layers in the stack. The method also includes forming a plurality of vias in the dielectric layers, the vias formed to include electrically conductive material therein. A first metal layer is formed on the upper dielectric layer, and a second metal layer is formed on the lower dielectric layer. The first metal layer and the second metal layer are each formed to be at least 250 μm thick. Other embodiments are described and claimed.
Abstract:
This invention provides a printed wiring board having an intensified drop impact resistance of a joint portion between pad and solder. An electrode pad comprises pad portion loaded with solder ball and a cylindrical portion projecting to the solder ball supporting the pad portion. An outer edge of the pad portion extends sideway from a cylindrical portion so that the outer edge is capable of bending. If the outer edge bends when stress is applied to the solder ball 30, stress on the outer edge of the pad portion on which stress is concentrated can be relaxed so as to intensify the joint strength between an electrode pad and solder ball.
Abstract:
Circuit boards and methods for their manufacture are disclosed. The circuit boards carry high-speed signals using conductors formed to include lengthwise channels. The channels increase the surface area of the conductors, and therefore enhance the ability of the conductors to carry high-speed signals. In at least some embodiments, a discontinuity also exists between the dielectric constant within the channels and just outside the channels, which is believed to reduce signal loss into the dielectric material.
Abstract:
A process for producing a printed wiring board comprises the steps of depositing a base metal on at least one surface of an insulating film to form a base metal layer and further depositing copper or a copper alloy to form a conductive metal layer, then removing a surface metal layer, which is formed through the above step, by etching to form a wiring pattern, and then treating the base metal layer with a treating liquid capable of dissolving and/or passivating the metal that forms the base metal layer. The printed wiring board so provided comprises an insulating film and a wiring pattern formed on at least one surface of the insulating film, the wiring pattern including a base metal layer deposited on the insulating film surface and a conductive metal layer, the base metal layer for forming the wiring pattern protrudes in a widthwise direction more than the conductive metal layer for forming the wiring pattern.
Abstract:
The invention provides a two-layer flexible substrate free of surface defects and having excellent etching characteristics and adherence to resist.The two-layer flexible substrate has a copper layer provided on one or both faces of an insulator film without using an adhesive, wherein the surface roughness (Ra) of the copper layer is 0.10 to 0.25 μm, and wherein the average crystal grain size [of copper] is no greater than 0.8 μm at 1 μm from the insulator film in the cross section of the copper layer. Preferably, the insulator film is a polyimide film.
Abstract:
The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature. Uniform etching allows for an efficient method of reducing a critical dimension of an electrically active structure by simple isotropic etch.
Abstract:
A board interconnection structure having a first printed wiring board in which a first conductive circuit is arranged on a first insulating layer, the first conductive circuit having, on an end portion thereof, a first connection terminal in which an upper surface width is narrower than a bottom surface width; a second printed wiring board in which a second conductive layer having a second connection terminal is arranged on a second insulating layer; and a connection layer that forms fillets along longitudinal side surfaces of the first connection terminal, and interconnects the first connection terminal and the second connection terminal. The first connection terminal may have a projection portion.
Abstract:
A method of manufacturing a chip on film (COF) is provided, including: providing a flexible circuit board; and forming a plurality of leads on the flexible circuit board. Each of the leads has a thickness of 8 um˜15 um and a cross-section shape is substantially rectangular. A COF structure, having a flexible circuit board and a plurality of leads formed on the flexible circuit board, is provided. Each lead has a thickness of 8 um˜15 um, and lead widths of the leads are based on pitch widths of a plurality of bumps corresponding to the leads. A COF structure, having a flexible circuit board and a plurality of leads formed on the flexible circuit board. Each of the leads has a thickness of 8 um˜15 um, and a lead width of each of the leads is greater than a bump width minus 4 um.
Abstract:
A wiring substrate with tensile-strength enhanced traces primarily comprises a core layer, a plurality of connecting pads, a plurality of traces, and a solder resist where the connecting pads and the traces are disposed on a top of the core layer. The solder resist is formed over the top of the core layer to cover the traces with the connecting pads partially or completely exposed. Furthermore, the traces have I-shaped cross sections to enhance the tensile strength of the traces.
Abstract:
A board interconnection structure having a first printed wiring board in which a first conductive circuit is arranged on a first insulating layer, the first conductive circuit having, on an end portion thereof, a first connection terminal in which an upper surface width is narrower than a bottom surface width; a second printed wiring board in which a second conductive layer having a second connection terminal is arranged on a second insulating layer; and a connection layer that forms fillets along longitudinal side surfaces of the first connection terminal, and interconnects the first connection terminal and the second connection terminal. The first connection terminal may have a projection portion.