Abstract:
An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C. in an ammonia-containing atmosphere, a temperature treatment by means of which the quartz glass of the quartz glass blank is set to a fictive temperature of 1250° C. or less, and a surface treatment of the quartz glass blank with formation of the quartz glass jig.
Abstract:
A silica glass containing TiO2, which has a fictive temperature of at most 1,200° C., a F concentration of at least 100 ppm and a coefficient of thermal expansion of 0±200 ppb/° C. from 0 to 100° C.A process for producing a silica glass containing TiO2, which comprises a step of forming a porous glass body on a target quartz glass particles obtained by flame hydrolysis of glass-forming materials, a step of obtaining a fluorine-containing porous glass body, a step of obtaining a fluorine-containing vitrified glass body, a step of obtaining a fluorine-containing formed glass body and a step of carrying out annealing treatment.
Abstract:
In the nanoimprint lithography, a titania-doped quartz glass having a CTE of −300 to 300 ppb/° C. between 0° C. and 250° C. and a CTE distribution of up to 100 ppb/° C. at 25° C. is suited for use as nanoimprint molds.
Abstract:
It is to provide a silica glass containing TiO2, having a wide temperature range wherein the coefficient of thermal expansion is substantially zero.A silica glass containing TiO2, which has a TiO2 concentration of from 3 to 10 mass %, a OH group concentration of at most 600 mass ppm and a Ti3+ concentration of at most 70 mass ppm, characterized by having a fictive temperature of at most 1,200° C., a coefficient of thermal expansion from 0 to 100° C. of 0±150 ppb/° C., and an internal transmittance T400-700 per 1 mm thickness in a wavelength range of from 400 to 700 nm of at least 80%. A process for producing a silica glass containing TiO2, which comprises porous glass body formation step, F-doping step, oxygen treatment step, densification step and vitrification step.
Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
A silica glass containing from 3 to 10 mass % of TiO2, which has a coefficient of thermal expansion from 0 to 100° C., i.e. CTE0 to 100, of 0±300 ppb/° C. and an internal transmittance per mm in thickness within a wavelength region of from 200 to 700 nm, i.e. T200 to 700, of at most 80%.
Abstract:
Methods, apparatus and precursors for producing substantially water-free silica soot, preforms and glass. The methods and apparatus make substantially water-free fused silica preforms or glass by removing water as a reaction product, removing water from the atmosphere, removing water from the transport process, or combinations thereof. In a first embodiment, substantially water-free soot, preforms or glass are achieved by using a hydrogen-free fuel, such as carbon monoxide, in the deposition process. In another embodiment, a soot producing burner has parameters that enable operation on a substantially hydrogen-free fuel. End burners, which minimize water production, are also described. Such water-free methods are useful in depositing fluorine-doped soot because of the low water present and the efficiency in which fluorine is incorporated. In another embodiment, glassy barrier layer methods and apparatus are described for minimizing dopant migration, especially fluorine. Laser and induction methods and apparatus for forming the barrier layer are depicted. A chlorine, fluorine and silica precursor, such as chlorofluorosilane, may be utilized to form fluorinated soot. Other methods and apparatus are directed to combinations of conventional and substantially water-free processes. One embodiment is directed to combustion enhancing additives for addition to the substantially hydrogen-free fuels. The methods and apparatus in accordance with the invention are particularly useful for producing photomask substrates and optical fiber preforms.
Abstract:
The present invention relates to an optical fiber for an optical amplifier and a method for manufacturing the same, which can be applied to an optical transmission system in the S-band area (4130 nm-1530 nm). According to the present invention, silica is used as a base material and the optical fiber for an optical amplifier contains Tm3+ ions and metal ions in a first core layer formed on an inner surface of a second core layer using the MCVD (Modified Chemical Vapor Deposition) method and a solution doping method whereby the practicability and productivity of the optical fiber are remarkably improved.
Abstract:
A fluorine-doped at least ternary silicate glass is disclosed which contains in particular TiO2. It can advantageously be used as a material having a low thermal expansion, wherein the slope of the coefficient of thermal expansion dCTE/T is ±2·109/K2 in the temperature range from −50° C. to 100° C. This material is particularly suited for micro-lithography, in particular for EUV-lithography.
Abstract translation:公开了一种掺氟的至少三元硅酸盐玻璃,其特别包含TiO 2。 它可以有利地用作具有低热膨胀性的材料,其中热膨胀系数dCTE / T的斜率在±2.10℃/ K 2℃的温度 范围为-50℃至100℃。该材料特别适用于微光刻,特别适用于EUV光刻。
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3+ ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。