Abstract:
A novel approach for chemical imaging is disclosed. In one embodiment, the disclosure relates to a system for producing a spatially accurate wavelength-resolved image of a sample from photons scattered from the sample, comprising an optical lens; a first optical fiber bundle of M fibers; a second optical fiber bundle of N fibers; an optical fiber switch; and a charge coupled device, wherein the image comprises plural sub-images, and wherein each sub-image is formed from photons scattered from a predetermined two spatial dimension portion of the sample, and wherein the scattered photons forming each sub-image have a predetermined wavelength different from a predetermined wavelength of scattered photons forming the other sub-images, and wherein the scattered photons for each sub-image are collected substantially simultaneously.
Abstract:
Disclosed is an apparatus and method for obtaining images using coherent anti-stokes Raman scattering. The apparatus for obtaining images using coherent anti-stokes Raman scattering according to the present invention comprises: a pump light source and a stokes light source that irradiate pump light and stokes light on a sample to generate anti-stokes light having anti-stokes frequency; a reference light source that generates reference light; and an image obtaining unit that obtains the images of the sample using a change in phase of the reference light due to a change in the refractive index of the sample in the vicinity of the anti-stokes frequency. Thereby, the present invention can provide the apparatus for obtaining images using coherent anti-stokes Raman scattering that is not affected by a non-resonant background signal phenomenon, strong resistance against noise even in a weak signal, and has excellent sensitivity and resolution.
Abstract:
Various embodiments of the present invention relate generally to systems for performing Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy comprises an analyte holder having a surface configured to retain an analyte and a light concentrator configured to receive an incident beam of light, split the incident beam into one or more beams, and direct the one or more beams to substantially intersect at the surface. The system may also include a collector configured to focus each of the one or more beams onto the surface, collect the Raman scattered light emitted from the analyte, and direct the Raman scattered light away from the surface.
Abstract:
A method for analyzing a mixture includes identifying a plurality of possible components of the mixture, calculating at least one feature for at least a portion of the plurality of possible components, and calculating a probability value for at least a portion of the plurality of possible components based on the at least one feature and at least one transfer function
Abstract:
Cross over (S560) in a genetic algorithm (128) is adapted for deriving an optimal mask (S540), or set of segments of a line. Each mask of a chromosome is subject to cross over with the respective mask of the other parent. Any overlapping part, whether a filtering (320) or pass-through part (350), is retained in the child (334) to preserve commonality. The part is preferably, potentially extended, according to one parent or the other, as decided pseudo-randomly (430). In a preferred application, spectrums of candidate blood constituents are masked for fitting to ensemble spectrums of test blood samples (S610, S620). The developed masks are applicable to constituent spectrums to create masked spectrums (S710) which are then applicable to an actual blood sample to be analyzed (S720).
Abstract:
A fine structure body comprises: (i) a base body, and (ii) a plurality of metal nanorods, which have been distributed and located on a surface of the base body, a proportion X being equal to at least 15%, the proportion X being calculated with the formula: X=(A−B)/C×100[%] wherein A represents the sum total of the projected areas of all of the metal nanorods, B represents the sum total of the projected areas of certain metal nanorods, each of which is located as an isolated metal nanorod at a spacing larger than 10 nm from the closest metal nanorod, and C represents the entire projected area of the fine structure body, including regions free from the metal nanorods.
Abstract:
The present invention refers to a Raman active composite material comprising a metal particle; a coating layer of a Raman active molecule bound to the metal particle; and an encapsulating layer of an amphiphilic polymer bound to the metal particle. The present invention also refers to methods of manufacturing a Raman active composite material described herein and their uses.
Abstract:
An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.
Abstract:
A method for detecting an ingredient in a food product includes establishing a spectral signature in a Raman spectrum obtained from a chemical substance; allowing a food sample solution obtained from a food product to come to contact with a first nano-scale surface structure in a first sensor, wherein the first sensor comprises a substrate, wherein the nano-scale surface structure comprises a plurality of columns over the substrate or a plurality of holes in the substrate; illuminating the food sample solution and the first nano-scale surface structure on the first sensor by a laser beam; scattering the laser beam by the food sample solution and the first nano-scale surface structure to produce a scattered light; obtaining a first Raman spectrum from the scattered light using a spectral analyzer; and identifying the spectral signature in the first Raman spectrum to determine the existence of the chemical substance in the food product.
Abstract:
Macroscopic and microscopic samples are imaged through a spectral filter operable into the short wave infrared, e.g., to approximately 3200 nm. The sample is illuminated for reflective, transmissive, fluorescent and/or Raman imaging by a laser or metal-halide arc beam. The filter has tunable birefringent retarders distributed rotationally and stacked in stages leading up to a selection polarizer. Image forming optics and CCD cameras collect the luminance of each pixel in the spatially resolved image, at multiple wavelengths to which the filter is tuned successively. The filter stages have comb shaped transmission characteristics. Two filter stages with distinctly different characteristics can be cascaded, one or both being tunable. The combined transmission characteristic has narrow passbands where the bandpass peaks of the stages coincide and wide free spectral range where the peaks do not coincide. Embodiments are disclosed for forensic analysis, material composition and morphology, chemical compound identification and detection of biological species.