Abstract:
In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.
Abstract:
The invention relates to a spectrometer for material analysis and to a control method for a spectrometer. The spectrometer includes a radiant source (140) formed by multiple single radiation sources (141) having different central wavelengths, for generating a measuring signal, a measurement object (100) containing a material to be analyzed, at least one electrically tunable Fabry-Perot filter (120, 220) for the band pass filtering the measuring signal by at least two pass bands, and a detector (300, 400) for detecting said filtered measuring signals received from the measurement object (100). In accordance with the invention the spectrometer has means (312) for modulating each of the single radiation sources (141) and correspondingly means (307, 309) for demodulating the detected signals such that the signal from each single radiation source can be distinguished from each other in the detector (300, 400), and the spectrometer has means for detecting (300, 400) and demodulating (306, 307) multiple pass bands simultaneously.
Abstract:
In a wavelength calibration method, an observed spectrum of a light that has a wavelength band is obtained, wherein the light has at least an attenuated wavelength component that corresponds to at least a predetermined absorption wavelength that is included in the wavelength band. A corrected spectrum is then obtained from the observed spectrum, wherein the corrected spectrum has reduced dependencies upon the full width at half maximum of an emission band of the light and upon an intensity ripple period of the light.
Abstract:
A light scanning type confocal microscope includes a light source unit that projects an excitation light beam, a scanning optical system that scans the excitation light beam, an objective lens that applies the excitation light beam to a sample, a separation optical element that separates the excitation light and detection light generated by the sample, a confocal detection unit that obtains a confocal effect, and a spectral detection device that spectrally detects the detection light. The spectral detection device has a spectroscopic element that spectrally separates the detection light, a light extracting unit that extracts light in a wavelength band from the light spectrally separated by the spectroscopic element, a detector that detects the light extracted by the light extracting unit, and a wavelength band shifting unit that shifts a wavelength band of light to be extracted by the light extracting unit.
Abstract:
A miniaturized fluidic spectrometer comprises a light source, a fluidic circuit having a plurality of flow channels through which an analyte flows, and a proximity detector array for detecting light from the light source transmitted through the fluidic circuit. Where the light source is broadband, a variable filter is disposed between the detector array and the fluidic circuit so that each position of the detector array is provided with a different wavelength response. The fluidic circuit is disposed in an optimized Fabry-Perot etalon. The fluidic circuit is defined in an elastomeric material and includes means for tuning the Fabry-Perot etalon by pressurization of flow channels in the elastomeric material.
Abstract:
A method and apparatus for quickly and accurately determining optical wavelengths using multiple features of an optical spectrum produced by an optical element that is configured to produce an optical spectrum having multiple resolvable features. Finding the mean of the measured values of the multiple resolvable features may provide an improved characterizing measurement of the element. Examples of optical elements suitable for use in the present invention include, but are not limited to, super-structured fiber Bragg gratings, multiple fiber Bragg gratings, Fabry-Perot etalons and gas cells.
Abstract:
An object to be detected is illuminated by a single broadband light source or multiple light sources emitting light at different wavelengths. The light is captured by an imager, which includes a light-detecting sensor covered by a hybrid filter.
Abstract:
A pixel device, comprising; a first plate, a second plate disposed under the first plate, and a third plate disposed under the second plate; a first power supply for providing a first voltage to the first plate; a second power supply for providing a second voltage to the second plate; and a third power supply for providing a third voltage to the third plate.
Abstract:
A wavelength meter is combined with optical elements to measure the wavelength in order to change communication channels by adjusting the wavelength. The wavelength meter has two wavelength-dependent interferometers with a lower sensitivity on large wavelength ranges and a higher sensitivity on small wavelength ranges, respectively. Each interferometer provides an output signal having an intensity that varies with wavelength. Using the interferometer with a lower sensitivity on large wavelength ranges to first determine a rough range of the wavelength of an incident optical signal, it then uses the interferometer with a higher sensitivity on small wavelength ranges to measure the accurate wavelength of the incident optical beam.
Abstract:
An optical tunable filter is provided including a first substrate having light transmission properties and having a movable part and a supporting member that movably supports the movable part and having a smaller thickness than the movable part, a second substrate having light transmission properties and opposed to the first substrate, a first gap and a second gap provided between the movable part and the second substrate, an interference part causing interference between the movable part and the second substrate through the second gap and a drive member changing an interval of the second gap by moving the movable part to the second substrate by making use of the first gap.