Non-approximate Voigt line profile fitting method for absorption spectrum spectroscopy

    公开(公告)号:US10274424B2

    公开(公告)日:2019-04-30

    申请号:US15959179

    申请日:2018-04-21

    Abstract: The present invention provides a Voigt line shape fitting method, including step 1: Calculate a Gauss line shape function and a Lorentz line shape function, and calculate a Voigt line shape function. Step 2: For determined line shape parameters to be fitted, calculate partial derivatives of the Voigt line shape function with respect to the parameters, convert a partial derivative of the Voigt line shape function with respect to a parameter into a partial derivative of the Gauss line shape function or the Lorentz line shape function with respect to the parameter. Step 3: Substitute the Voigt line shape function and the partial derivative of the Voigt line shape function with respect to the parameter to be fitted, into a least squares algorithm step, perform least squares fitting calculation, and determine whether to terminate the least squares fitting calculation or return to step 1 to perform next iterative calculation.

    POLISHING APPARATUS
    174.
    发明申请
    POLISHING APPARATUS 审中-公开

    公开(公告)号:US20190118331A1

    公开(公告)日:2019-04-25

    申请号:US16162063

    申请日:2018-10-16

    Abstract: There is disclosed a polishing apparatus which allows for easy replacement of a light source with another type of light source. The light-source assembly includes: a base fixed to a polishing table and coupled to a light-emitting transmission line; and a light-source module having a lamp for emitting light. The light-source module is removably attached to the base. The base is a common base which is adapted to any of a plurality of light-source modules of different types including the light-source module. The base includes a positioning structure which achieves positioning of the light-source module relative to the base.

    System for target material detection

    公开(公告)号:US10268889B2

    公开(公告)日:2019-04-23

    申请号:US15476562

    申请日:2017-03-31

    Abstract: A method of identifying a target material in a spectral image includes acquiring a spectral image of a scene. The method also includes performing image segmentation to partition the spectral image into a plurality of segments. The method includes accessing a database of spectral models of a plurality of materials to determine a material whose spectral model is most similar to the spectral data for the segment, a difference between the spectral model of the material and the spectral data for the segment including measurable reflectance or radiance at characteristic frequencies or wavelengths. The method also includes analyzing a database of spectral data for a plurality of target materials to identify a target material whose spectral data also has measurable reflectance or radiance at the characteristic frequencies or wavelengths. And the method includes outputting an identifier of the target material for display with the spectral image.

    Laser sensor for trace gas detection

    公开(公告)号:US10241037B2

    公开(公告)日:2019-03-26

    申请号:US15520051

    申请日:2015-10-20

    Inventor: Azer P. Yalin

    Abstract: Systems and methods are disclosed to determine the concentration of a species within a sample. An example method may include collecting optical loss data over a range of frequencies from the sample using a spectroscopy system; placing the optical loss data into a plurality of bins, each bin having a defined frequency width; determining an average optical loss data value for the optical loss values within each bin that have an optical loss value less than a threshold value; removing the optical loss data within each bin having a value outside a tolerance range bounding the average optical loss data value for the respective bin; fitting a spectral curve to the remaining optical loss data; and determining the concentration of the species within the sample based on the spectral curve.

    Method and apparatus for spectral reflectance imaging using digital cameras

    公开(公告)号:US10215632B2

    公开(公告)日:2019-02-26

    申请号:US15703981

    申请日:2017-09-13

    Inventor: Yasser Fawzy

    Abstract: A method and spectral light-based apparatus with an embedded (built-in) spectral calibration module for acquiring multi-spectral reflectance images from a digital camera are disclosed. The apparatus may be an attachment device, which may be integrated with a consumer digital camera (such as smartphone camera), and may measure and/or estimate spectral reflectance and true color values for an object recorded by the camera. An example apparatus comprises an array of monochromatic light sources, preferably pulsed LEDs, irradiating in a time-multiplexed manner to generate light spectra in the range of 400 nm-1000 nm, an optical lens to limit the field of view of the attached camera, an electro-mechanical shutter or plate with its inner (reflection) surface coated with a diffuse reflectance standard to ensure flat spectral response, and an interface module for synchronizing the time-multiplexed light spectra with the coated shutter opening and closing and with the digital frames acquired by the camera, such that the true spectral reflectance and true color value of an object can be measured.

    Optical gas sensor comprising an LED emitter for the emission of light of a narrow bandwidth

    公开(公告)号:US10190974B2

    公开(公告)日:2019-01-29

    申请号:US15525338

    申请日:2015-11-02

    Abstract: An optical gas sensor (1), for quantitatively measuring a concentration of one or more gases, includes a radiation source (2) for emitting light waves (L), a cuvette (3) for holding a gas (G) to be measured, and a detector (4) for measuring light intensities. The light source (2) includes at least one emitter (5) of light waves (L) and is configured to emit light waves (L) of at least one first wavelength and of a second wavelength different from the first wavelength simultaneously or separately from each other. The emitter (5) is further configured to emit a spectrum the full half-life width of which is a maximum 50% of the effective wavelength, and to emit light waves (L) having a controlled beam path. The detector (4) is configured to quantitatively detect an intensity of emitted light waves (L) of the first wavelength and of the second wavelength.

Patent Agency Ranking