Abstract:
A compact source for high brightness x-ray generation is disclosed. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved by aligning discrete x-ray sub-sources, or through the use of x-ray targets that comprise microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and in turn allows bombardment of the x-ray generating material with higher electron density and/or higher energy electrons, leading to greater x-ray brightness.Some embodiments of the invention comprise x-ray optical elements placed between sub-sources of x-rays. These x-ray optical elements may form images of one or more x-ray sub-sources in alignment with other x-ray sub-sources, and may enhance the linear accumulation that can be achieved.
Abstract:
A high dose output, through transmission target X-ray tube and methods of use includes, in general an X-ray tube for accelerating electrons under a high voltage potential having an evacuated high voltage housing, a hemispherical shaped through transmission target anode disposed in said housing, a cathode structure to deflect the electrons toward the hemispherical anode disposed in said housing, a filament located in the geometric center of the anode hemisphere disposed in said housing, a power supply connected to said cathode to provide accelerating voltage to the electrons.
Abstract:
An X-ray tube for accelerating electrons under a high voltage potential, said X-ray tube includes an evacuated elongated housing that is sealed, a through transmission target anode deposited on an inner surface of said elongated housing, said through transmission target anode configured having a cross-sectional center, a cathode structure disposed in said elongated housing, said cathode structure configured to emit the electrons toward said through transmission target anode, two or more filaments disposed linearly in said elongated housing, said two or more filaments linearly positioned end-to-end proximate said cross-sectional center, said evacuated housing configured to vacuum seal therein said two or more filaments, and, thus, such X-ray tube functions to provide a lengthened, elongated, symmetrical radiation field.
Abstract:
Provided is an anode for an X-ray generating tube, which reduces a drop in the quality of an emitted X-ray due to the history of X-ray emitting operation. A target layer is formed on the inside of the edge of a support substrate. An end portion of an extended portion of a joining member, which protrudes over a support surface of the support substrate, is covered with a conductive member higher in melting point than the joining member. The conductive member is electrically connected to the target layer, thereby electrically connecting the joining member to the target layer.
Abstract:
Provided is an X-ray generating tube with improved withstand voltage property by a simple structure, the X-ray generating tube including a cathode connected to one opening of an insulating tube and an anode connected to the other opening, in which a resistive film having a lower sheet resistance value than that of the insulating tube is disposed on an outer periphery of the insulating tube, and the cathode and the anode are electrically connected to each other via the resistive film.
Abstract:
The purpose of the present invention is to provide a stereo x-ray radiation device that is small and for which handling is simple. One cathode that functions as an emitter and two anodes that function as targets are disposed in a single straight-tube shaped vacuum vessel. The stereo x-ray generating device is characterized by the cathode being a cold cathode disposed in the center part of the vessel, the anodes being disposed each to one end of the vessel, and the spaces between the anodes disposed in the two ends of the vessel and the cathode being constituted such that the same can be moved closer or apart along the axial line of the vessel.
Abstract:
An x-ray transmitter, which may be compact, may be in the form of a housing with an x-ray transparent window sputtered with a metal on one wall, and tribocharging electron source on another wall.
Abstract:
An anode member includes a first metal tube and a second metal tube having a coefficient of thermal expansion that is larger than that of the first metal tube. A peripheral portion of a target is bonded to the anode member via a bonding material that is arranged so as to extend over the first metal tube and the second metal tube.
Abstract:
The present invention is directed toward an X-ray scanner that has an electron source and an anode. The anode has a target surface with a series of material areas spaced along it in a scanning direction. The material areas are formed from different materials. The electron source is arranged to direct electrons at a series of target areas of the target surface, in a predetermined order, so as to generate X-ray beams having different energy spectra.
Abstract:
The present application is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.