Abstract:
A method for manufacturing a probe card is provided. A first inactive layer, a first patterned photoresist layer and a first metal layer are sequentially formed on a substrate. The first metal layer has first through holes exposing a portion of the first patterned photoresist layer. A second inactive layer and a second patterned photoresist layer are sequentially formed thereon. The second patterned photoresist layer has second through holes exposing the first through holes. Pins are formed inside the first and the second through holes. A second metal layer is formed on the second patterned photoresist layer. One end of each pin is connected to the second metal layer. The pins and the second metal layer are taken out. A circuit carrier having third through holes is provided. The pins are inserted into the third through holes. The second metal layer is patterned to form pinheads.
Abstract:
A method includes applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step. A microelectronic unit includes a substrate, and a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
Abstract:
A conductive component capable of electrically connecting two objects is proposed. The conductive element includes an elastic body that is provided with at least two conductive particles therein. When the conductive component is pressed, a portion of the conductive particles protrudes from the elastic body, thereby forming an electrical connection with external electrical components. In comparison with the prior art, due to the elasticity of the elastic body of the present invention, the conductive component has better elasticity. The conductive particles in the elastic body can protrude from the through holes of the elastic body to connect electrically with the external electrical components. The conductive component of the present invention can assure the efficient electrical connection between the opposing electrical components. The present invention further provides an electrical connector and a chip module that also have the above-mentioned effect.
Abstract:
A manufacturing process of an embedded type flexible or rigid printed circuit board includes multiple steps. First, a layer of dry film is applied to a layer of copper foil. Then a circuit pattern is formed on the copper foil through photolithography processes. An etching stop layer is electroplated on the copper foil according to the circuit pattern. The etching stop layer is then electroplated with copper. The copper foil is softened by a high temperature process after removing the dry film. Then the layer of the copper foil is etched after coating with an organic layer and the organic layer is solidified.
Abstract:
A wiring board includes an insulating base; an adhesive layer formed on the surface of the insulating base; a conductor wiring formed on the surface of the adhesive layer; and a bump formed crossing the longitudinal direction of the conductor wiring over regions on the adhesive layer on both sides of the conductor wiring, wherein the back face at a part of the conductor wiring where the bump is formed, and the back faces and parts of the side faces of the bump formed above the regions of the adhesive layer on both sides of the conductor wiring, are embedded in the surface of the adhesive layer so as to be adhered to the adhesive layer. Even when the wiring width of the conductor wiring is decreased, the conductor wiring can be adhered to the wiring board firmly.
Abstract:
The present invention realizes strengthening of a ground of a lower-surface ground electrode of an upper semiconductor chip and miniaturization in a semiconductor module on which two semiconductor chips are mounted in a stacked manner. A lower semiconductor chip is fixed to a bottom of a recess formed in an upper surface of a module board, and an upper semiconductor chip is fixed to an upper surface of a support body made of conductor which is formed over the upper surface of the module board around the recess. External electrode terminals and a heat radiation pad are formed over a lower surface of the module board.
Abstract:
A multilayer electronic component having a ceramic substrate and a resin layer mounted on a mounting substrate. Recess portions are formed at an outside-facing major surface side of the resin layer. In the resin layer, columnar conductors are disposed so that axis line directions thereof are aligned in a thickness direction of the resin layer. End portions of the columnar conductors are located inside the recess portions further from opening faces thereof and have end surfaces exposed in the recess portions. When a multilayer electronic component is mounted on a mounting substrate, solder is provided on the end surfaces of the columnar conductors in the recess portions. The thickness of solder used in the above mounting does not interfere with a reduction in size and height of an electronic device that includes the above multilayer electronic component.
Abstract:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server or supercomputer embodiment is also described.
Abstract:
A manufacturing process of an emboss type flexible or rigid printed circuit board includes multiple steps. First, a layer of dry film is applied to a layer of copper foil. Then a circuit pattern is formed on the copper foil through photolithography processes. An etching stop layer is electroplated on the circuit pattern. The etching stop layer is then electroplated with copper. The copper foil is softened by a high temperature process after removing the dry film. Then the layer of the copper foil is etched after coating with an organic surface layer and the organic surface layer is solidified.
Abstract:
A method for manufacturing a semiconductor device that includes mounting a semiconductor chip on a circuit board having an insulating substrate, a plurality of wiring layers arranged on the insulating substrate, and bumps formed on the wiring layers respectively, in which the bump is provided across a longitudinal direction of a corresponding one of the wiring layers so as to extend over regions on both sides of the wiring layer and contact a surface of the insulating substrate, without a stepped portion formed on a surface of the bump, and a cross sectional shape of the bump taken in a width direction of the wiring layer is such that a central portion is higher than both side portions. The method also includes connecting electrode pads of the semiconductor chip to the bumps, thereby achieving connection between the electrode pads of the semiconductor chip and the wiring layers via the bumps.