Abstract:
A printed circuit board comprises at least one microstrip transmission line with a conductive solid reference plane and at least one conductive trace embedded in a dielectric substrate, and further comprises at least one conductive shielding layer having a lattice structure, wherein the conductive trace is arranged between the solid reference plane and the shielding layer.
Abstract:
The present invention provides the mechanical positioning of electronic circuits, mounted on rigid printed circuit boards or flexible circuits, creating a protected region within a Safe Equipment, so that an action to attempt to invade or violate this area of the equipment will trigger an alarm that triggers the blocking of the equipment use, instantly erasing the safety keys of the safe equipment; to avoid this possibility, the invention provides a region completely surrounded by protection circuits and sensors surrounding the sensitive part of the device with alarm devices.
Abstract:
The present disclosure is generally directed to illumination devices, and methods for making the same. The device, in particular, includes a first conductor layer, a first insulator layer disposed on the first conductor layer and having at least one first aperture defined therein through the first insulator layer, a second conductor layer disposed on the first insulator layer and having at least one second aperture defined therein through the second conductor layer and positioned to align with the at least one first aperture, and a light manipulation layer disposed on the second conductor layer and having at least one pair of apertures defined therein through the light manipulation layer including a third aperture and a fourth aperture, where the third aperture is positioned to align with the at least one second and first apertures.
Abstract:
Provided is a highly reliable ceramic circuit board which can be manufactured at a low cost and is friendly to environment as a material from which lead is eliminated in forming the multilayered structure.A multi-layered ceramic circuit board includes: a sintered ceramic base body 2; a first circuit wiring pattern 3 which is formed on a surface of the ceramic base body and is formed of conductive paste made of conductive metal; an insulation layer 8 which is formed on a surface layer of the first circuit wiring pattern and is made of a dielectric; and a conductive pattern and a resistor 4 which are formed on a surface layer of the insulation layer, the conductive pattern having a second circuit wiring pattern and a land on which a circuit mounting part is mounted are formed, wherein the portions other than the land portion on which the circuit mounting part is mounted are covered with a protective film 5 by coating, and an electronic circuit part 7 is connected to the land by a conductive adhesive agent, wherein the dielectric is formed of a green sheet 11 of a low temperature co-fired ceramics circuit board which is prepared by mixing alumina powder and glass powder with a solvent (see FIG. 5).
Abstract:
Disclosed herein are a touch panel and a method for manufacturing the same. The touch panel includes: a transparent substrate formed of silicon; and sensing electrodes each formed in a metal mesh pattern on one surface or both surfaces of the transparent substrate.Since the transparent substrate is formed of silicon having excellent adhesive property, the sensing electrode can be formed on a transparent substrate even without a separate adhesive material.
Abstract:
In one implementation, a method of fabrication of stretchable electronic skin is provided. The method may include receiving an elastic material net. An elastic conductor mesh is formed on the elastic material net. A device is electrically bonded to the elastic conductor mesh. The implementation may further include forming a mold comprising a net pattern on a substrate and creating the elastic material net by coating the mold with an elastic material precursor, and then removing the elastic net from the substrate with the elastic conductor thereon. In one embodiment, a stretchable electronic skin including a net structure having a non-conducting elastic material with an elastic conductor mesh formed on the non-conducting elastic material, and a device electrically connected to the elastic conductor mesh.
Abstract:
The printed wiring board has a conductor of signal line 41 and two conductive lines 42 on one face of the first insulating layer 10 covered by a second insulating layer 20, while having a ground layer of the ground 30 potential on the opposite face thereof, when the dielectric tangent A of the second insulating layer (insulating layer A) 20 is larger than the dielectric tangent B of the first insulating layer (insulating layer B) 10, Relational Expression 1: (relative permittivity B)·(width (W41) of signal line(s) 41)/(thickness (T10) of first insulating layer (insulating layer B) 10)>(relative permittivity A)·{(thickness (T41) of signal line(s) 41)/(distance (S1) between signal line(s) 41 and one conductive line 42a)+(thickness (T41) of signal line(s) 41)/(distance (S2) between signal line(s) 41 and other conductive line 42b)+(thickness (T41) of signal lines 41)/(distance (S3) between pair of signal lines (41a and 41b)·2} is satisfied.
Abstract:
A method reduces coupling noise and controls impedance discontinuity in ceramic packages by: providing at least one reference mesh layer; providing a plurality of signal trace layers, with each signal layer having one or more signal lines and the reference mesh layer being adjacent to one or more of the signal layers; disposing a plurality of vias through the at least one reference mesh layer, with each via providing a voltage (Vdd) power connection or a ground (Gnd) connection; selectively placing via-connected coplanar-type shield (VCS) lines relative to the signal lines, with a first VCS line extended along a first side of a first signal line and a second VCS line extended along a second, opposing side of said first signal line. Each of the VCS lines interconnect with and extend past one or more vias located within a directional path along which the VCS lines extends.
Abstract:
A general purpose BGA security cap includes a substrate, an integrated circuit die, and an array of bond balls. The substrate includes an anti-tamper security mesh of conductors. The bond balls include outer bond balls and inner bond balls that are fixed to the underside of the substrate. The integrated circuit drives and monitors the anti-tamper security mesh and communicates data using a serial physical interface through a subset of the inner bond balls. In one example, a user has circuitry to be protected. The user purchases the BGA security cap and fits it over the circuitry to be protected such that the integrated circuit of the security cap communicates tamper detect condition information via the serial interface to the underlying protected circuitry and causes sensitive information to be erased or a program to be halted in the event of a tamper condition.
Abstract:
An electronic device includes a circuit board and an electrostatic protection structure. The circuit board has a top surface and a bottom surface opposite to the top surface. The electrostatic protection structure is positioned on the top surface of the circuit board. The electrostatic protection includes an insulating layer and a conducting layer coating on the insulating layer. Four ground terminals are formed on the bottom surface of the circuit board. The insulating layer includes a main portion and four first connecting portions extending from the main portion. The conducting layer on the four first connecting portion are connected to the four first ground terminal.