Abstract:
Two new passive atomic filters that operate at 422.67 nm and 460.73 nm respectively are disclosed. The filter wavelengths overlap Fraunhofer lines, thereby providing outstanding sunlight rejection. The new calcium filter utilizes collisional energy transfer with Xenon to wavelength shift the violet light to 657.28 nm. An internal photon conversion efficiency of 25% was recorded. The new strontium filter utilizes collisions with noble gases to produce emission at 689.26 nm. An internal photon conversion efficiency of 45% was recorded.
Abstract:
Apparatus for quantitative analysis of a material sample, such as whole grain, as a function of optical characteristics thereof includes a light source and a solid state detector of silicon or other suitable construction. A material sample is positioned between the light source and the detector, and light energy is focused through the sample onto the detector at a plurality of preselected wavelengths in the near-infrared range of 800-1100 nm. Illumination wavelength is selectively controlled by an opaque disc having a central axis and a plurality of apertures around the periphery at uniform radius from the disc axis. A plurality of filter elements are carried by the disc over respective ones of the peripheral apertures and have transmission characteristics corresponding to the plurality of preselected wavelengths. The filter elements are carried in a continuous circumferential array around the disc periphery, with the array including at least one opaque section for chopping light energy incident on the detector. The disc is rotated about its axis in a continuous motion so that each filter element in turn intersects light energy transmitted through the sample. Analysis electronics is responsive to light energy incident on the detector at the plurality of preselected wavelengths to indicate a preselected characteristic of the material sample.
Abstract:
A method and system for calibrating color filters employed in polychromatic imaging of a subject includes a scanning mirror (28), telescope (30), filters (104), and a detector array (60) employed for both imaging and calibration processes. A bundle (44) of optical fibers is employed for producing a slit-shaped beam of solar rays which are collimated and applied to a diffraction grating plate (54) or prism (72) to produce a set of dispersed solar rays. The dispersion is based on color. In one position of the scanning mirror, rays from a subject (12) to provide an image are directed through the telescope and scanned across the filters (104) and detectors (102). In another position of the scanning mirror, the set of dispersed solar rays is scanned past the filters and the detectors. Imaging data outputted by the detectors is collected for producing an image (112) of the subject. Data of the dispersed rays is collected for calibrating the color filters. A stored reference color profile (92) of each filter is correlated with the calibration data ( 90) to obtain a set of correction terms which are employed for altering the image data to compensate for any drift in the color characteristics of the filters. A broad band detector detects Fraunhofer spectral lines to serve as a reference standard wavelength for alignment of the system.
Abstract:
An improved AOTF-based imaging spectrometer that has ability to electronically set the bandpass wavelength of an AOTF to any desired value in its wide tuning range, provides significant observational flexibility. This allows observations to be tailored in real-time and enables the spectrometer to address a wide range of objectives and permits real-time modification of the observational parameters, such as in flight or in other situations in which only remote control is possible. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. A preferred embodiment employs a camera zoom lens as the input lens. A TeO.sub.2 AOTF and a relay lens are placed at selected distances behind the back focal plane of the input lens, respectively. A charge coupled device (CCD) camera, which comprises a camera, camera zoom lens and a CCD detector is placed at a selected distance behind the relay lens. An RF signal generator is used to drive the AOTF. Two embodiments of the invention are disclosed herein. One operates in the visible/near-infrared domain, in the wavelength range of 0.48 to 0.76 microns. The other operates in the infrared wavelength range of 1.2 to 2.5 microns.
Abstract:
A detector for laser radiation that detects the presence of above-threshold radiation in one of a set of wavelength ranges employs a set of Fresnel lenses designed to focus radiation in a particular band onto a metal-coated film. A series of Fresnel lenses is designed with constant focal lengths, but each lens is designed to have that focal length at a specific wavelength. Only when the wavelength of the incident radiation matches the design wavelength of the Fresnel lens will the film be marked or machined. Radiation of differing wavelengths will be defocused to a degree that will reduce the intensity below the level that will mark or machine the film. An electronic based version of this spectroscopy detector can also be implemented.
Abstract:
An apparatus is disclosed to optically determine which of four fluorophores is attached to a band of DNA molecules on an electrophoresis gel. The apparatus includes four separate band pass interference filters and four wedge prisms to create four discrete areas of light on a detector. Digital comparison of the relative intensity of light sensed in the four discrete areas determines the identity of the excited fluorophore.
Abstract:
A method of optically detecting a change in intensity of an emission peak in a plasma process, such as a plasma etching process, by reflecting an emission spectrum of radiation from the plasma reaction off of a pair of rugate filters. The reflected emission spectrum has increased in-band reflections and decreased out-of-band reflections which provides reduced noise and an easier-to-detect emission peak. The method can be used for end-point detection in a plasma etching process such as etching of SiO.sub.2.
Abstract:
Each of three or more telescopic filters in pairs of filters and detectors therefor has very narrow passband lines centered about laser wavelengths and nearby guardbands. As defined, a passband is any wavelength region of the spectrum permitted by a system to pass through to a detector, and a guardband is a spectral region near but not including the laser lines of interest. Each laser wavelength is simultaneously detected in exactly two detectors. Associated with each wavelength is a guardband near that wavelength, which is used to detect and reject broader band radiation. False alarms are made rare by proper parameter selection.
Abstract:
The present invention is an apparatus for forming a spectrally weighted value from received multispectral radiation. The spectral weighting is done optically prior to detection of the received radiation by dispersing the received multispectral radiation into a plurality of wavelength bin areas. This dispersed radiation is then passed through a weighting filter which includes first and second filter elements for each of the wavelength bin areas. The filtered radiation is then converged to corresponding detectors with the spectrally weighted value formed by the difference between the signals of the first and second detectors. A pair of filters, two detectors and a subtracter are employed to produce a generalized weight factor having positive or negative weights. This system can form one or more spectrally weighted values from the radiation from a single pixel, or one spectrally weighted value form the radiation from a plurality of pixels. The addition of a polarization filter permits the formation of spectrally weighted values for various polarizations of a single pixel.
Abstract:
An atomic resonance filter device. The device includes a bulbous shaped cell containing atomic vapor which converts narrow band received light into longer wavelength photons which are collected by an integrated sphere like housing and a spatial collecting cone to which passes the longer wavelength photons to a photodector. The housing has an inner reflective surface or coating which reflects received light and converted light frequencies. The housing opening is covered with a filter that passes the received light and blocks the spectrum of converted light. The inner surface of the filter is coated with a coating highly reflective to converted light. A light collecting cone with a cylindrical body portion is centrally positioned in the bottom of the cesium cell on the surface of the housing opposite the housing opening and the cylindrical portion passes through the wall of the housing to the exterior. Collecting cone improves light collection to the photodetector by about 50%. A filter that passes the converted light and reflects the received light is positioned between the output end of the light collecting cone exterior of the housing and a photodetector tube so that only converted light is received by the photodetector. The photodetector produces electrical signals related to information carried by the received light frequency.