Abstract:
The present invention includes patterning a metal layer on a glass substrate. A dielectric layer is formed on the metal layer. An amorphous silicon layer is subsequently formed on the dielectric layer. A first positive photoresist is formed on the amorphous silicon layer. Then, a back-side exposure is used by using the gate electrodes as a mask. A bake step is performed to expand the lower portion of the photoresist. Next, a second positive photoresist layer is formed on the amorphous silicon layer and the residual first positive photoresist layer. A further back-side exposure is employed again from the back side of the substrate using the gate electrode as the mask. A second back step is applied to expand the lower portion of the second positive photoresist layer. An ion implantation is performed by using the second positive photoresist as a mask. Next, the substrate is then annealed. Amorphous silicon layer is then patterned. A further dielectric layer for isolation is formed on the patterned amorphous silicon layer. Source and drain are patterned on the dielectric layer to contact with the amorphous silicon layer. Subsequently, a passivation layer is deposited on the source and drain.
Abstract:
Method for forming a polycrystalline silicon (ploy-Si) film of a semiconductor device includes forming the gate electrode on a substrate and depositing a dielectric layer on the substrate and the conductive layer. Then a first layer (microcrystalline silicon:.mu.c-Si) is formed on the dielectric layer and a second layer (hydrogenated amorphous silicon:a-Si:H) is deposited on the first layer. Noted that the polycrystalline silicon (poly-Si) can be fabricated by applying the laser annealing to the first layer and the second layer to transform them to poly-Si. Annealing the first layer and the second layer by laser, followed by fabricating the source and drain electrodes, thus the TFT with good electrical characteristics is fabricated.
Abstract:
A solar cell module includes lower and upper substrates that are spaced apart from each other, a plurality of spaced apart solar cells, a plurality of gratings, and a light-transmissive encapsulant disposed between the lower and upper substrates to encapsulate the solar cells and the gratings. Each of the gratings has a grating center, and four reflecting regions formed around the grating center. Each of the reflecting regions has a light entrance face that has a plurality of valleys and peaks. The valleys and peaks alternate with each other along a direction from the grating center to a corresponding one of the corners of a corresponding one of the four adjacent solar cells.
Abstract:
The present disclosure provides a semiconductor device that includes a semiconductor substrate, and a transistor formed in the substrate. The transistor has a gate structure that includes an interfacial layer formed on the substrate, a high-k dielectric layer formed on the interfacial layer, a capping layer formed on the high-k dielectric layer, the capping layer including a silicon oxide, silicon oxynitride, silicon nitride, or combinations thereof, and a polysilicon layer formed on the capping layer.
Abstract:
A metal gate/high-k dielectric semiconductor device provides an NMOS gate structure and a PMOS gate structure formed on a semiconductor substrate. The NMOS gate structure includes a high-k gate dielectric treated with a dopant impurity such as La and the high-k gate dielectric material of the PMOS gate structure is deficient of this dopant impurity and further includes a work function tuning layer over the high-k gate dielectric.
Abstract:
A metal gate/high-k dielectric semiconductor device provides an NMOS gate structure and a PMOS gate structure formed on a semiconductor substrate. The NMOS gate structure includes a high-k gate dielectric treated with a dopant impurity such as La and the high-k gate dielectric material of the PMOS gate structure is deficient of this dopant impurity and further includes a work function tuning layer over the high-k gate dielectric. A process for simultaneously forming the NMOS and PMOS gate structures includes forming the high-k gate dielectric material, and the work function tuning layer thereover, then selectively removing the work function tuning layer from the NMOS region and carrying out a plasma treatment to selectively dope the high-k gate dielectric material in the NMOS region with a dopant impurity while the high-k gate dielectric in the PMOS region is substantially free of the dopant impurity.
Abstract:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
Abstract:
A semiconductor structure prevents energy that is used to blow a fuse from causing damage. The semiconductor structure includes a device, guard ring, and at least one protection layer. The device is constructed on the semiconductor substrate underneath the fuse. The seal ring, which surrounds the fuse, is constructed on at least one metal layer between the device and the fuse for confining the energy therein. The protection layer is formed within the seal ring, on at least one metal layer between the device and the fuse for shielding the device from being directly exposed to the energy.
Abstract:
A laser fuse structure for a semiconductor device, the laser fuse structure having an array of laser fuses wherein one or more of the fuses in the array have a tortuous fuse line extending between first and second connectors that connect the fuse to an underlying circuit area.
Abstract:
A method of integrated circuit fabrication includes first forming at least one via in an insulting layer, and thereafter forming at least one trench-like structure separately. After a via is formed in an insulating layer, a layer of resist material is formed on the surface of the insulting layer and substantially filled the via. This step is followed by patterning at least one trench-like structure on the resist layer, and the trench-like structure is etched to the desired level. In some other embodiments, at least one trench-like structure is formed before at least one via is formed. An integrated circuit is manufactured by the aforementioned methods.