Abstract:
Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. One the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
Abstract:
An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
Abstract:
A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or microelectromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
The current invention includes methods and apparatuses for processing, that is, altering and imaging, a sample in a high pressure charged particle beam system. Embodiments of the invention include a cell in which the sample is positioned during high pressure charged particle beam processing. The cell reduces the amount of gas required for processing, thereby allowing rapid introduction, exhaustion, and switching between gases and between processing and imaging modes. Maintaining the processes gases within the cell protects the sample chamber and column from contact with the gases. In some embodiments, the temperature of the cell walls and the sample can be controlled.
Abstract:
Material is deposited in a desired pattern by spontaneous deposition of precursor gas at regions of a surface that are prepared using a beam to provide conditions to support the initiation of the spontaneous reaction. Once the reaction is initiated, it continues in the absence of the beam at the regions of the surface at which the reaction was initiated.
Abstract:
An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
Abstract:
A charged particle beam and a laser beam are used together to micromachine a substrate. A first beam alters the state of a region of the work piece, and the second beam removes material whose state was altered. In one embodiment, an ion beam can create photon absorbing defects to lower the local ablation threshold, allowing the laser beam to remove material in a region defined by the ion beam. The combination of laser beam and charged particle beam allows the creation of features similar in size to the charged particle beam spot size, at milling rates greater than charged particle processing because of the increased energy provided by the laser beam.
Abstract:
An improved method for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles collide with precursor gas particles, the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound that can be pumped away in a gaseous state rather than redepositing onto the sample.
Abstract:
An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.