Abstract:
An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
Abstract:
Laser processing is enhanced by using endpointing or by using a charged particle beam together with a laser. End-pointing uses emissions, such as photons, electrons, ions, or neutral particles, from the substrate to determine when the material under the laser has changed or is about to change. Material removed from the sample can be deflected to avoid deposition onto the laser optics.
Abstract:
The current invention includes methods and apparatuses for processing, that is, altering and imaging, a sample in a high pressure charged particle beam system. Embodiments of the invention include a cell in which the sample is positioned during high pressure charged particle beam processing. The cell reduces the amount of gas required for processing, thereby allowing rapid introduction, exhaustion, and switching between gases and between processing and imaging modes. Maintaining the processes gases within the cell protects the sample chamber and column from contact with the gases. In some embodiments, the temperature of the cell walls and the sample can be controlled.
Abstract:
Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate. The beam preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
Abstract:
A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas.
Abstract:
A detector for use with a high pressure SEM, such as an ESEM® environmental SEM from FEI Company, extends the effective detection space above the PLA, thereby increasing secondary signal amplification without increasing working distance or pressure. Embodiments can therefore provide improved resolution and can operate at lower gas pressures.
Abstract:
A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
Abstract:
An improved microcalorimeter-type energy dispersive x-ray spectrometer provides sufficient energy resolution and throughput for practical high spatial resolution x-ray mapping of a sample at low electron beam energies. When used with a dual beam system that provides the capability to etch a layer from the sample, the system can be used for three-dimensional x-ray mapping. A preferred system uses an x-ray optic having a wide-angle opening to increase the fraction of x-rays leaving the sample that impinge on the detector and multiple detectors to avoid pulse pile up.
Abstract:
A method for fabrication of microscopic structures that uses a beam process, such as beam-induced decomposition of a precursor, to deposit a mask in a precise pattern and then a selective, plasma beam is applied, comprising the steps of first creating a protective mask upon surface portions of a substrate using a beam process such as an electron beam, focused ion beam (FIB), or laser process, and secondly etching unmasked substrate portions using a selective plasma beam etch process. Optionally, a third step comprising the removal of the protective mask may be performed with a second, materially oppositely selective plasma beam process.
Abstract:
A scanning transmission electron microscope operated with the sample in a high pressure environment. A preferred detector uses gas amplification by converting either scattered or unscattered transmitted electrons to secondary electrons for efficient gas amplification.