Abstract:
Embodiments described herein relate to apparatus and methods of thermal processing. More specifically, apparatus and methods described herein relate to laser thermal treatment of semiconductor substrates by increasing the uniformity of energy distribution in an image at a surface of a substrate.
Abstract:
An apparatus for processing substrates includes a continuum radiation source, a source manifold optically coupled to the continuum radiation source and comprising: a plurality of beam guides, each having a first end that optically couples the beam guide to the continuum radiation source; and a second end. The apparatus also includes a detector manifold to detect radiation originating from the source manifold and transmitted through a processing area, and one or more transmission pyrometers configured to analyze the source radiation and the transmitted radiation to determine an inferred temperature proximate the processing area.
Abstract:
A method includes exposing a sample etalon-object to sample incident radiation, resulting in a sample transmitted radiation and sample reflected radiation; exposing a reference etalon-object to reference incident radiation, resulting in a reference transmitted radiation and reference reflected radiation; and analyzing resultant radiation for a heterodyned spectrum. The sample transmitted radiation may become the reference incident radiation, and the reference transmitted radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample transmitted radiation may become the resultant radiation. The sample transmitted radiation may become the reference incident radiation, and the reference reflected radiation may become the resultant radiation. The reference transmitted radiation may become the sample incident radiation, and the sample reflected radiation may become the resultant radiation.
Abstract:
Examples described herein generally relate to apparatus and methods for rapid thermal processing (RTP) of a substrate. In one example, a process chamber includes chamber body, a window disposed on a first portion of the chamber body, a chamber bottom, and a shield disposed on a second portion of the chamber body. The shield has a flat surface facing the window to reduce reflected radiant energy to a back side of a substrate disposed in the process chamber during operation. The process chamber further includes an edge support for supporting the substrate and a cooling member disposed on the chamber bottom. The cooling member is disposed in proximity of the edge support to cool the edge support during low temperature operation in order to improve the temperature uniformity of the substrate.
Abstract:
A semiconductor processing method and semiconductor device are described. The processing method includes forming a p-doped germanium structure on a substrate, annealing the p-doped germanium structure using pulses of laser radiation, and forming a titanium structure in direct contact with the p-doped germanium structure.
Abstract:
Embodiments described herein relate to thermal processing of semiconductor substrates. More specifically, embodiments described herein relate to laser thermal processing of semiconductor substrates. In certain embodiments, a uniformizer is provided to spatially and temporally decorrelate a coherent light image.
Abstract:
A method and apparatus for determining the temperature of a substrate within a processing chamber are described herein. The methods and apparatus described herein utilize an etalon assembly and a heterodyning effect to determine a first temperature of a substrate. The first temperature of the substrate is determined without physically contacting the substrate. A separate temperature sensor also measures a second temperature of the substrate and/or the substrate support at a similar location. The first temperature and the second temperature are utilized to calibrate one of the temperature sensors disposed within the substrate support, a model of the processes performed within the processing chamber, or to adjust a process parameter of the process performed within the processing chamber.
Abstract:
Methods, systems, and apparatus provide for optically monitoring individual lamps of substrate processing chambers. In one aspect, the individual lamps are monitored to determine if one or more lamps are in need of replacement. A method includes using one or more camera coupled to a borescope to capture a plurality of images of one or more lamps in a substrate processing chamber. The plurality of images is analyzed to identify a change of mean light pixel intensity in an image reference region associated with each lamp. The method includes generating an alert based on the detection of the mean light pixel intensity change.
Abstract:
Apparatus, system, and method for thermally treating a substrate. A source of pulsed electromagnetic energy can produce pulses at a rate of at least 100 Hz. A movable substrate support can move a substrate relative to the pulses of electromagnetic energy. An optical system can be disposed between the energy source and the movable substrate support, and can include components to shape the pulses of electromagnetic energy toward a rectangular profile. A controller can command the source of electromagnetic energy to produce pulses of energy at a selected pulse rate. The controller can also command the movable substrate support to scan in a direction parallel to a selected edge of the rectangular profile at a selected speed such that every point along a line parallel to the selected edge receives a predetermined number of pulses of electromagnetic energy.
Abstract:
Apparatus and methods for combining beams of amplified radiation are disclosed. A beam combiner has a collimating optic positioned to receive a plurality of coherent radiation beams at a constant angle of incidence with respect to an optical axis of the collimating optic. The respective angles of incidence may also be different in some embodiments. The collimating optic has an optical property that collimates the beams. The optical property may be refractive or reflective, or a combination thereof. A collecting optic may also be provided to direct the plurality of beams to the collimating optic. The beam combiner may be used in a thermal processing apparatus to combine more than two beams of coherent amplified radiation, such as lasers, into a single beam.