Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package that includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
This invention is directed generally to methods of controlling the odor of a biological material, and more particularly to methods comprising providing the biological material with an Fe(III)-reducing bacteria and a source of Fe(III). This invention also is directed generally to compositions and kits for controlling the odor of a biological material.
Abstract:
The present invention is a vessel floatation aid for vessels of the type including a water line and laterally spaced gunwales. The floatation aid includes an inflatable bladder including an outer membrane attached to a backer strap and the space there between defining said inflatable portion, such that said backer strap and outer membrane together oriented along said longitudinal direction for temporarily providing increased buoyancy; and including upper tabs and lower tabs connected to a backer strap, said tabs adapted for receiving cords for temporarily lashing said floatation aid to a vessel for releasably and temporarily attaching said buoyancy means below and adjacent a gunwale of a vessel, and proximate a waterline.
Abstract:
An apparatus (10) for analyzing lubricant oils and functional fluids includes an optical emission spectrometer (OES) (26) having a substantially continuously valued wavelength versus intensity output (140). The OES (26) analyzes light captured from a spark emission stand (58) through which the fluid sample is flowed. An expert system (160-172) operates according to a set of Rules, and generates diagnostic text (174) for an operator based on the information about the fluid sample provided by the OES (26) and other measurement devices. The apparatus (10) includes an airflow passage (154) in the OES (26) spark enclosure that is characterized by airflow substantially parallel to the spark electrodes (128, 130) promoting even-wear of the electrodes.
Abstract:
An optical spectral sensing device for determining at least one property of a fluid. The device has an elongated porous body, a first end and a second end, a solid-state optical emitter at the first end of the body oriented to emit radiation toward the second end of the body, and a solid-state optical detector at the second end of the body oriented to detect radiation emitted by the optical emitter. A package for detecting properties of a fluid includes a body defining a cavity, with a movable and biased carrier for an optical detector or emitter mounted in the cavity for increased reliability. A system for determining relative concentrations of fluids in a sample includes emitter/detector pairs operating at reference wavelength and wavelengths corresponding to absorption peaks of at least two fluids, and a processor for determining concentration based on measured data and calibration data.
Abstract:
A low-temperature safe sensor package. The package includes a housing having an internal cavity, an inlet port in communication with the internal cavity and a fluid source, and an outlet port in communication with the internal cavity. A sensor carrier is moveably arranged within the internal cavity. A spring element is arranged between the sensor carrier and a portion of the housing for biasing the sensor carrier into an operating position within the internal cavity.
Abstract:
An optical spectral sensing device for determining at least one property of a fluid. The device has an elongated porous body, a first end and a second end, a solid-state optical emitter at the first end of the body oriented to emit radiation toward the second end of the body, and a solid-state optical detector at the second end of the body oriented to detect radiation emitted by the optical emitter. A package for detecting properties of a fluid includes a body defining a cavity, with a movable and biased carrier for an optical detector or emitter mounted in the cavity for increased reliability. A system for determining relative concentrations of fluids in a sample includes emitter/detector pairs operating at reference wavelength and wavelengths corresponding to absorption peaks of at least two fluids, and a processor for determining concentration based on measured data and calibration data.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package that includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
A financial product. The financial product includes an underlying portfolio component, a fixed income component, and a scale-in component. The underlying portfolio component includes an initial investment allocation into an alpha-generating portfolio. The fixed income component is structured and arranged to generate a predictable rate of return and includes an initial investment allocation into a fixed income portfolio. The scale-in component is structured and arranged to increase the investment allocation into the underlying portfolio component when a cumulative return of the alpha-generating portfolio exceeds a threshold amount.
Abstract:
A heat exchanger evaluation system (84) includes a refrigeration subsystem (126) and a platform (94) in communication with the subsystem (126) for attachment of a heat exchanger (32). The system, (84) further includes a thermal imaging camera (168) and a monitor (100). A method (180) entails routing a fluid (38) through the heat exchanger (32) via the refrigeration subsystem (126). The camera (168) detects the temperature variation across the heat exchanger (32) as the fluid (38) flows through the heat exchanger, and provides successive thermal images representing the temperature variation responsive to the flow of the fluid (38). The thermal images are utilized to determine an efficacy of the flow through the heat exchanger (32). In particular, a determination can be made as to whether the flow deviates from a pre-determined flow path (79) of the fluid (38) through the heat exchanger.