Abstract:
Systems and methods are provided for generating reference signals with high interference immunity. A signal source may generate reference signals having a particular reference frequency based on characteristics of the source of the reference signals, for use in driving at least one component in a system. One or more processing may then process the generated reference signals, based on particular frequency positions relative to the particular reference frequency and other operations and/or components of the system. The processing may include filtering at the particular frequency positions. The particular frequency positions may correspond to the harmonics positions of the particular reference frequency. The signal source may be a crystal oscillator.
Abstract:
An asynchronous successive approximation register analog-to-digital converter (SAR ADC), which utilizes one or more overlapping redundant bits in each digital-to-analog converter (DAC) code word, is operable to generate an indication signal that indicates completion of each comparison step and indicates that an output decision for each comparison step is valid. A timer may be initiated based on the generated indication signal. A timeout signal may be generated that preempts the indication signal and forces a preemptive decision, where the preemptive decision sets one or more remaining bits up to, but not including, the one or more overlapping redundant bits in a corresponding digital-to-analog converter code word for a current comparison step to a particular value. For example, the one or more remaining bits may be set to a value that is derived from a value of a bit that was determined in an immediately preceding decision.
Abstract:
A system for processing signals may be configured to detect occurrence of particular errors, comprising meta-stability events, during digital conversion to analog signals, and to handle any detected meta-stability event, such as by adjusting at least a portion of a corresponding digital output based on detection of the meta-stability event. The adjusting of the digital output may comprise setting at least the portion of the digital output, such as to one of a plurality of predefined digital values or patterns. The system may comprise a code generator for generating and/or outputting the predefined digital values or patterns. The system may comprise a selector for adaptively selecting, for portions of the digital output, between output of normal processing path and between predefined values or patterns.
Abstract:
Methods and systems for reliable bootstrapping switches may comprise sampling a received signal with a bootstrapping switch, where the bootstrapping switch comprises a switching metal-oxide semiconductor (MOS) transistor having a pull-down path coupled to a gate terminal of the switching MOS transistor, wherein: source terminals of both a diode-connected transistor and a second MOS transistor are coupled to the gate terminal of the switching MOS transistor; drain terminals of both the diode-connected transistor and the second MOS transistor are coupled to a source terminal of a third MOS transistor, the third MOS transistor coupled in series with a fourth MOS transistor; and a drain terminal of the fourth MOS transistor is coupled to ground. The third and fourth MOS transistors may be in series with the second MOS transistor. A gate terminal of the fourth transistor may be switched from ground to a supply voltage to activate the pull-down path.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is aliased onto a desired signal by a timing offset in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal. A decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
Systems and methods are provided for detecting meta-stability during processing of signals. A meta-stability detector may comprise a timing control circuit, a plurality of signal adjustment circuits, and a plurality of signal state circuits. The timing control circuit may measure comparison time for each conversion cycle during analog-to-digital conversions. Each signal adjustment circuit may apply a logical operation to one or more input signals to the signal adjustment circuit, and provide a corresponding output signal. Each signal state circuit may store state information relating to one or more input signals to the signal state circuit, for at least one processing cycle; and provide an output signal based on prior stored information. The plurality of signal state circuits, plurality of signal adjustment circuits, and the timing control circuit may be arranged to generate one or more control signals for controlling an analog-to-digital converter (ADC) during the analog-to-digital conversions
Abstract:
Methods and systems are provided for controlling signal processing outputs. In signal processing circuitry, searching through a plurality of quantization levels for a quantization level that matches an analog input, and when the search fails within a particular amount of time, adjusting at least a portion of an output of the signal processing circuitry. The adjusting comprises setting the at least portion of the output to a predefined value. Setting the output, or portions thereof, may comprise selecting between output of a normal processing path and output of a code generation path configured for handling search failures. Timing information may be generated for use in controlling generating of the output of the signal processing circuitry. The timing information may be used in measuring per-cycle operation time during the search through the plurality of quantization levels.
Abstract:
A system for processing signals may be configured to detect occurrence of particular errors, comprising meta-stability events, during digital conversion to analog signals, and to handle any detected meta-stability event, such as by adjusting at least a portion of a corresponding digital output based on detection of the meta-stability event. The adjusting of the digital output may comprise setting at least the portion of the digital output, such as to one of a plurality of predefined digital values or patterns. The system may comprise a code generator for generating and/or outputting the predefined digital values or patterns. The system may comprise a selector for adaptively selecting, for portions of the digital output, between output of normal processing path and between predefined values or patterns.