Abstract:
Electrostatic capacitance can be measured with high directivity in a specific direction. A sensor chip that measures the electrostatic capacitance includes a first electrode, a second electrode and a third electrode. The first electrode has a first portion. The second electrode has a second portion extended on the first portion of the first electrode, and is insulated from the first electrode within the sensor chip. The third electrode has a front face extended in a direction which intersects with the first portion of the first electrode and the second portion of the second electrode, and is provided on the first portion and the second portion. The third electrode is insulated from the first electrode and the second electrode within the sensor chip.
Abstract:
An antenna device according to an exemplary embodiment includes a first metal layer, a first dielectric layer, a second metal layer, and a second dielectric layer. The first dielectric layer has a thermal conductivity and heat resistance that are higher than those of an FR-4 resin. The antenna device includes a first metal terminal and a second metal terminal, and a thermosensor. A pair of an input terminal and an output terminal of the thermosensor are electrically connected to the first metal terminal and the second metal terminal, respectively, and the second metal layer includes a first segment and a second segment. The first metal terminal is disposed above the first segment, and the second metal terminal is disposed above the second segment.
Abstract:
An apparatus and method for real-time sensing of properties in industrial manufacturing equipment are described. The sensing system includes first plural sensors mounted within a processing environment of a semiconductor device manufacturing system, wherein each sensor is assigned to a different region to monitor a physical or chemical property of the assigned region of the manufacturing system, and a reader system having componentry configured to simultaneously and wirelessly interrogate the plural sensors. The reader system uses a single high frequency interrogation sequence that includes (1) transmitting a first request pulse signal to the first plural sensors, the first request pulse signal being associated with a first frequency band, and (2) receiving uniquely identifiable response signals from the first plural sensors that provide real-time monitoring of variations in the physical or chemical property at each assigned region of the system.
Abstract:
In a method for acquiring data indicating an electrostatic capacitance between a focus ring and a measuring device includes a disc-shaped base substrate, sensor units arranged along an edge of the base substrate and a circuit substrate mounted on the base substrate, a processor acquires one or more first data sets respectively including a plurality of digital values indicating an electrostatic capacitance of a corresponding sensor unit. The measuring device is transferred to a region on the mounting table surrounded by the focus ring. The processor acquires second data sets when one or more digital values or an average of the digital values included in each of said one or more first data sets exceeds a first threshold. The processor stores measurement data including the respective second data sets or averages of the digital values of each of the second data sets. The measuring device is unloaded from the chamber.
Abstract:
Electrostatic capacitance can be measured with high directivity in a specific direction. A sensor chip that measures the electrostatic capacitance includes a first electrode, a second electrode and a third electrode. The first electrode has a first portion. The second electrode has a second portion extended on the first portion of the first electrode, and is insulated from the first electrode within the sensor chip. The third electrode has a front face extended in a direction which intersects with the first portion of the first electrode and the second portion of the second electrode, and is provided on the first portion and the second portion. The third electrode is insulated from the first electrode and the second electrode within the sensor chip. No portion is extended from the first electrode to be positioned above the first portion.
Abstract:
A system of inspecting a focus ring is provided. The system includes a measuring device, a transfer device and an operation unit. The measuring device includes a base substrate, a sensor chip and a circuit board. The sensor chip has a sensor electrode and is provided along an edge of the base substrate. The circuit board is configured to output a high frequency signal to the sensor electrode and acquire a digital value indicating electrostatic capacitance based on a voltage amplitude in the sensor electrode. The transfer device is configured to scan the measuring device. The operation unit is configured to obtain difference values by performing a difference operation with respect to the digital values acquired by the measuring device at multiple positions along a direction which intersects with an inner periphery of the focus ring.