Abstract:
A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.
Abstract:
Source-collector modules for use with EUV lithography systems are disclosed, wherein the source-collector modules employ a laser-produced plasma EUV radiation source and a grazing-incidence collector. The EUV radiation source is generated by first forming an under-dense plasma, and then irradiating the under-dense plasma with infrared radiation of sufficient intensity to create a final EUV-emitting plasma. The grazing incidence collector can include a grating configured to prevent infrared radiation from reaching the intermediate focus. Use of debris mitigation devices preserves the longevity of operation of the source-collector modules.
Abstract:
An alignment tool for use in calibrating an optical bench and/or alignment of an optical system such as a collector optical system for EUV and X-ray applications is disclosed. The optical system includes multiple nested mirrors attached to a mechanical support. The tool includes a mechanical interface plate, a lower reference ring, an upper reference ring and a pinhole member disposed spaced apart axially in sequence; a first positioning device attached to the mechanical interface plate and to the lower reference ring; the first positioning device being adapted for precisely adjusting the position of the lower reference ring in two dimensions; a second positioning device attached to the mechanical interface plate and to the upper reference ring and adapted for precisely adjusting the position of the upper reference ring in two dimensions; a third positioning device attached to the upper reference plate and to the pinhole member and adapted for precisely adjusting the position of the pinhole member in three dimensions; a mechanical interface mounted on or integral with the mechanical interface plate and being substantially identical in form to that of the mechanical support of the optical system.
Abstract:
A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Sn vapor from a Sn vapor source of the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device may be used to increase the amount of EUV radiation provided to the intermediate focus. An EUV lithography system that utilizes the SOCOMO is also disclosed.
Abstract:
Optical mirror elements for high bandwidth free space optical communication are produced by an electroforming replication technique. Onto the precision surface of a mandrel that is a negative of the required optical surface a layer of metal is deposited forming an exact copy of the mandrel surface and is then separated to form the required optical element. During the production process the mandrel may be coated with a variety of materials that are then separated together with the electroformed optical element during the release step to form a monolithic structure that includes a reflective coating. The mandrel remains unchanged by the process and can then be re-used. The high cost of conventional polishing techniques is therefore limited to the production of the mandrel. The replication process results in the production of low cost optical elements suitable for high bandwidth free space optical data transmission.
Abstract:
A process for the fabrication of a metallic component, such as those used in energy generation and heat transfer systems (e.g., reactor vessels, combustion chambers), in propulsion systems (e.g., rocket engines), and communications (e.g., optical telescopes). The process comprises: providing an object (e.g. a shaped mandrel) having surface; performing a first electroforming operation, thereby forming a first metallic layer comprising a metallic material (e.g. nickel, copper) on said surface; forming a first mask layer on the first metallic layer, the first mask layer comprising a non-conductive material (e.g. PMMA); patterning the first mask layer, thereby providing a plurality of first recesses in the first mask layer in which the non-conductive material above the first metallic layer is removed, said first recesses having a dimension of elongation; performing second electroforming operation using a metallic material whereby said first recesses are filled with said metallic material and a second metallic layer is formed comprising said metallic material extending at least a first predetermined thickness above, and entirely or partially over the surface of, said first mask layer. The process may include: forming a second mask layer on the upper surface of the second metallic layer, the second mask layer comprising a non-conductive material; patterning the second mask layer, thereby providing a plurality of second recesses in the second mask layer in which the non-conductive material above the second metallic layer is removed, said second recesses having a dimension of elongation; performing a third electroforming operation using said metallic material whereby said second recesses are filled with said metallic material and a third metallic layer is formed comprising said metallic material extending at least a second predetermined thickness above, and entirely or partially over the surface of, said mask layer. The non-conductive material and mandrel are removed, thus producing a component single or multiple layers of cooling or heat transfer channels, the channels in adjacent layers for example having directions at right angles.
Abstract:
A manufacturing method creates a type of telescope which is athermal, lightweight, optical quality for visible and IR applications. The method includes: a) optical mirrors being made by immersing a master, that is an optical component with a curvature opposite to the mirror required into an electrolytic bath where the applied current transfers metal ions and deposit them on the master, the cathode, as a layer, b) the layer being bonded by an adhesive, solder or any other attachment process to a mechanical reinforcing structure, c) after the hardening of the bond or glue, the thin layer being finally released from the master and having maintained the optical quality of the master. The master or mandrel can be cleaned and reused for repeating this method and manufacturing large series of telescopes.
Abstract:
Source-collector modules for use with EUV lithography systems are disclosed, wherein the source-collector modules employ a laser-produced plasma EUV radiation source and a grazing-incidence collector. The EUV radiation source is generated by first forming an under-dense plasma, and then irradiating the under-dense plasma with infrared radiation of sufficient intensity to create a final EUV-emitting plasma. The grazing incidence collector can include a grating configured to prevent infrared radiation from reaching the intermediate focus. Use of debris mitigation devices preserves the longevity of operation of the source-collector modules.
Abstract:
A collector system for extreme ultraviolet (EUV) radiation includes a collector mirror and a radiation-collection enhancement device (RCED) arranged adjacent an aperture member of an illuminator. The collector mirror directs EUV radiation from an EUV radiation source towards the aperture member. The RCED redirects a portion of the EUV radiation that would not otherwise pass through the aperture of the aperture member or that would not have an optimum angular distribution, to pass through the aperture and to have an improved angular distribution better suited to input specifications of an illuminator. This provides the illuminator with greater amount of useable EUV radiation than would otherwise be available from the collector mirror alone, thereby enhancing the performing of an EUV lithography system that uses such a collector system with a RCED.
Abstract:
Systems, assemblies and methods for thermally managing a grazing incidence collector (GIC) for EUV lithography applications are disclosed. The GIC thermal management assembly includes a GIC mirror shell interfaced with a jacket to form a sealed chamber. An open cell, heat transfer (OCHT) material is disposed within the metal chamber and is thermally and mechanically bonded with the GIC mirror shell and jacket. A coolant is flowed in an azimuthally symmetric fashion through the OCHT material between input and output plenums to effectuate cooling when the GIC thermal management assembly is used in a GIC mirror system configured to receive and form collected EUV radiation from an EUV radiation source.