Abstract:
Particles are removed from a surface of a substrate by a method comprising causing liquid aerosol droplets comprising water and a tensioactive compound to contact the surface with sufficient force to remove particles from the surface.
Abstract:
The invention relates to a device for producing mist or aerosol. The device comprises at least two atomisers for atomizing a liquid into drop jets. In accordance with the invention, at least two atomizers are arranged oriented substantially directly towards one another in a manner making the drop jets produced thereby collide directly into each other.
Abstract:
An emitter for atomizing and discharging a liquid entrained in a gas stream is disclosed. The emitter has a nozzle with an outlet facing a deflector surface. The nozzle discharges a gas jet against the deflector surface. The emitter has a duct with an exit orifice adjacent to the nozzle outlet. Liquid is discharged from the orifice and is entrained in the gas jet where it is atomized. A method of operating the emitter is also disclosed. The method includes establishing a first shock front between the outlet and the deflector surface, a second shock front proximate to the deflector surface, and a plurality of shock diamonds in a liquid-gas stream discharged from the emitter.
Abstract:
A fire suppression system is disclosed. The system includes a gaseous extinguishing agent and a liquid extinguishing agent. At least one emitter is in fluid communication with the liquid and gas. The emitter is used to establish a gas stream, atomize and entrain the liquid into the gas stream and discharge the resulting liquid-gas stream onto the fire. A method of operating the system is also disclosed. The method includes establishing a gas stream having first and second shock fronts using the emitter, atomizing and entraining the liquid with the gas at one of the two shock fronts to form a liquid-gas stream, and discharging the stream onto the fire. The method also includes creating a plurality of shock diamonds in the liquid-gas stream discharged from the emitter.
Abstract:
Nozzle assemblies are provided which are effective for atomizing and mixing different or unlike fluids, and for combining the mixtures with solids and the like. The nozzle assemblies project the fluids, in the form of sprays or jets, which combine or mix at points or areas spaced forwardly of the nozzles, whereby clogging of the nozzles is avoided, and the separate fluids are prevented from contaminating each other within the nozzles or other parts of the assemblies. Nozzles of special or unique design are provided, which have an improved atomizing action.
Abstract:
An apparatus and a method for producing a liquid film from one or more liquid precursors onto the surface of a substrate in order to establish a coating, the apparatus being arranged to direct an aerosol flow against the surface of the substrate in a coating chamber. The apparatus includes a homogenizing nozzle for making the aerosol flow homogeneous substantially in the direction of the surface of the substrate prior to passing the flow into the coating chamber.
Abstract:
A dispensing gun has a gun body, a first component inlet, a second component inlet, a dispense head, a first valve, a second valve, a clamp, and a trigger. The component inlets are attached to the gun body for receiving components. The dispense head is for dispensing the components. The valves are attached to the gun body and there are valve stems for controlling the dispensing of the components. The clamp has an upper portion and a lower portion, with the first and second valve stems positioned in between the upper and lower portions. The two portions are attached such that the first and second valve stems move with movement of the valve actuator in a direction parallel to the axes of the valve stems. The trigger is attached to the gun body and controls movement of the clamp.
Abstract:
An emitter for atomizing and discharging a liquid entrained in a gas stream is disclosed. The emitter has a nozzle with an outlet facing a deflector surface having a closed end cavity. The nozzle discharges a gas jet against the deflector surface. The emitter has a duct with an exit orifice adjacent to the nozzle outlet. Liquid is discharged from the orifice and is entrained in the gas jet where it is atomized.
Abstract:
A fire suppression system is disclosed. The system includes a gaseous extinguishing agent and a liquid extinguishing agent. At least one emitter is in fluid communication with the liquid and gas. The emitter is used to establish a gas stream, atomize and entrain the liquid into the gas stream and discharge the resulting liquid-gas stream onto the fire. A method of operating the system is also disclosed. The method includes establishing a gas stream having first and second shock fronts using the emitter, atomizing and entraining the liquid with the gas at one of the two shock fronts to form a liquid-gas stream, and discharging the stream onto the fire. The method also includes creating a plurality of shock diamonds in the liquid-gas stream discharged from the emitter.