Abstract:
A device for coating a product includes a provider for providing a liquid containing reagents necessitated for coating. Additionally, the device comprises a transporter for contacting the surface of the product to be coated with the liquid and passing same by the liquid such that the surface to be coated remains in contact with the liquid for a predetermined period of time so as to effect coating thereof.
Abstract:
A coating apparatus and method are disclosed that applies a coating to a product in a uniform and controlled manner. The coating apparatus comprises a feeding stage, an optional pre-treatment stage, at least one coating stage and a finishing stage. The coating stage(s) comprise a coating material feeder and a coating device. The coating device includes an aperture conforming to the perimeter of a substrate to be coated in a first and second dimension. As the substrate passes through the aperture, coating material is applied in a uniform and consistent layer ranging from 0.001 inches to 0.250 inches. The coating material also back fills minor surface imperfections and blemishes on the substrate to achieve a consistent finish across the whole area where coating material is applied. The coating device includes first and second shell portions. The first shell portion has a concave surface surrounding the aperture portion. The concave surface allows for coating material to collect prior to deposition upon the surface of the substrate. The second shell has a substantially flat face and a mirror aperture that aligns with the aperture of the first shell. A groove is formed along the perimeter of the aperture to collect coating material for coating the object as it passes through the apertures of both shells.
Abstract:
A coating method is disclosed that applies a coating to a product in a uniform and controlled manner. The coating method comprises a feeding step, an optional pre-treatment step, at least one coating step, and a finishing step. The coating step(s) comprise the use of a coating material feeder and a coating device. During the coating step(s), a substrate passes through an aperture in the coating device which, includes first and second shell portions, where the first shell portion has a concave surface surrounding the aperture portion. The second shell has a substantially flat face and a mirror aperture that aligns with the aperture of the first shell. The concave surface of the first shell and a groove formed along the perimeter of the aperture collect coating material for coating the object as it passes through the apertures of both shells.
Abstract:
A semi-automated coating system for providing medical devices with antimicrobial coatings is disclosed. The semi-automated coating system extends the coating solution's usable life span by minimizing exposure to light, air and temperature extremes. Moreover, the disclosed semi-automated coating system minimizes operator and environmental exposure to the coating solutions. Methods for coating medical devices using the semi-automated coating system are also provided. The methods disclose techniques for preparing coating solutions, setting up the coating system and operating the device. Moreover, the systems and methods described herein minimize operator intervention with the coating processes and provide superior product consistency.
Abstract:
A wafer surface treating apparatus has an overflow treating tank for holding therein a chemical in which a wafer is to be soaked to perform a surface treatment of the wafer, piping for circulating the chemical overflowing from said treating tank to said treating tank, a filter unit for filtering the chemical passing through said piping to remove foreign articles from the chemical, and at least two temperature regulating mechanisms. The first temperature regulating mechanism keeps a temperature of the chemical in said treating tank at a predetermined temperature. The second temperature regulating mechanism regulates the temperature of the chemical in said filter unit to a temperature at which no deposit is produced from the chemical in said filter.
Abstract:
Systems and methods for electroless plating a first metal onto a second metal in a molten salt bath including: a bath vessel holding a dry salt mixture including a dry salt medium and a dry salt medium of the first metal, and without the reductant therein, the dry salt mixture configured to be heated to form a molten salt bath; and the second metal is configured to be disposed in the molten salt bath and receive a pure coating of the first metal thereon by electroless plating in the molten salt bath, wherein the second metal is more electronegative than the first metal.
Abstract:
The invention relates to a system for the local surface treatment of an aeronautical part (1) to be treated.Said system is characterised in that it comprises a plurality of containers (18, 19, 20, 21) each comprising a treatment product (22, 23, 24, 25), at least one bath enclosure (102a, 102b) suitable for delimiting a fluid-tight space (26a, 26b) between this bath enclosure (102a, 102b) and a portion (101a, 101b) of the part to be treated, and a controlled circuit (10) for supplying said fluid-tight space (26a, 26b) with treatment product (22, 23, 24, 25) the containers (18, 19, 20, 21) connecting at least this container (18, 19, 20, 21) to said fluid-tight space (26a, 26b) and comprising valves for managing the supply to the fluid-tight space by one or more containers from the plurality of containers.
Abstract:
An apparatus for chemical bath deposition includes a housing defining a chemical tank, a circulation pipe, and at least one flow adjustment device disposed inside the chemical tank. The chemical tank has an opening on a top surface and is configured to accept and hold at least one substrate inside the chemical tank. The circulation pipe has at least one portion inside the chemical tank, and is configured to supply at least one chemical to the chemical tank. The at least one flowing adjustment device includes any one of a turbine, a diffuser and a bubbler, or a combination thereof.
Abstract:
Exemplary pressurization and coating systems, methods, and apparatuses are described herein. In certain embodiments, pressurization systems, methods, and apparatuses are used in conjunction with coating systems, methods, and apparatuses to control pressure about a substrate after a coating material is applied to a surface of the substrate. An exemplary system includes a die tool configured to apply a coating material to a substrate passing through the die tool and a pressurization apparatus attached to the die tool and forming a pressurization chamber. The pressurization apparatus is configured to receive the substrate from the die tool and control pressure about the substrate in the pressurization chamber. In certain embodiments, the die tool forms a coating chamber and is configure,d to apply the coating material on at least one surface of the substrate in the coating chamber.
Abstract:
Provided is an apparatus for efficiently removing a pollutant source in a snout of a steel plating line such as a steel galvanizing line. The pollutant removing apparatus includes at least one pollutant collecting member connecting to a snout between a heating furnace and a plating tank, and a contact-free inducer varying magnetic field within the snout to forcibly guide, without contact, a pollutant source of a steel plate or a processing unit to the pollutant collecting member.