Abstract:
A method of fabricating a semiconductor device comprises forming a dielectric layer above a substrate, the dielectric layer including a fixed dielectric portion and a proof mass portion, forming a source region and a drain region in the substrate, forming a gate electrode in the proof mass portion, and releasing the proof mass portion, such that the proof mass portion is movable with respect to the fixed dielectric portion and the gate electrode is movable with the proof mass portion relative to the source region and the drain region.
Abstract:
A cavity-down pressure sensor device has a pressure-sensing die that is electrically connected to a master control unit (MCU) using face-to-face bonding. Connecting the pressure-sensing die in this manner avoids the need to wire bond the pressure-sensing die to the master control unit.
Abstract:
A sensor has a foundation wafer having a sensor chamber, at least one silicon-based micromechanical structure integrated with the sensor chamber of the foundation wafer, at least one covering that covers the foundation wafer in a region of the sensor chamber, the covering including a first layer which is a deposition layer and is permeable to an etching medium and reaction products, and a hermetically sealing second layer which is a sealing layer and located above the first layer, the deposition layer which is the first layer being permeable in a region of the sensor chamber to the etching medium and a reaction product, the deposition layer for being permeable having structures selected from the group consisting of etching openings, porous regions, and both.
Abstract:
A MEMS angular rate sensor is presented with two pairs of suspended masses that are micromachined on a semiconductor layer. A first pair includes two masses opposite to and in mirror image of each other. The first pair of masses has driving structures to generate a mechanical oscillation in a linear direction. A second pair of masses includes two masses opposite to and in mirror image of each other. The second pair of masses is coupled to the first pair of driving masses with coupling elements. The two pairs of masses are coupled to a central bridge. The central bridge has a differential configuration to reject any external disturbances. Each of the masses of the two pairs of masses includes different portions to detect different linear and angular movements.
Abstract:
A micromechanical component for a sensor or microphone device. An electrode surface of a first electrode structure is aligned with a second electrode structure. A substructure of the first electrode structure is entirely made of at least one electrically conductive material. The electrode surface and an opposite surface of the first electrode structure are outer surfaces of the substructure. A stop structure protruding from the electrode surface towards the second electrode structure is formed on the first electrode structure. The first electrode structure includes an insulating region which extends from the electrode surface to the opposite surface of the first electrode structure. The stop structure is formed either as a projection of the at least one insulating region protruding from the electrode surface towards the second electrode structure or is bordered by the at least one insulating region.
Abstract:
A micromechanical sensor core for an inertial sensor, having a movable seismic mass, a defined number of anchor elements, by which the seismic mass is fastened on a substrate, a defined number of stop devices fastened on the substrate for stopping the seismic mass, a first springy stop element, a second springy stop element and a solid stop element being developed on the stop device. The stop elements are designed in such a way that the seismic mass is able to strike in succession against the first springy stop element, the second springy stop element and the solid stop element.
Abstract:
The present invention discloses a integrated structure of an MEMS pressure sensor and an MEMS inertia sensor, comprising: an insulating layer formed on a substrate, a first lower electrode and a second lower electrode both formed on the insulating layer, further comprising a first upper electrode forming an air pressure-sensitive capacitor together with the first lower electrode, and a second upper electrode forming a reference capacitor together with the second lower electrode; further comprising an inertia-sensitive structure supported above the substrate by a third support part, and a fixed electrode plate forming an inertia detecting capacitor of an inertia sensor together with the inertia-sensitive structure; and a cover body which packages the inertia detecting capacitor composed of the inertia-sensitive structure and the fixed electrode plate on the substrate. The integrated structure according to the present invention integrates the MEMS inertia sensor and the MEMS pressure sensor on the same substrate, which may effectively reduce the area of the chip, so as to reduce the cost of the chip. Single packaging may complete the packaging of the entire chip and reduce the cost of the chip packaging.
Abstract:
A wearable device is provided having multiple sensors configured to detect and measure different parameters of interest. The wearable device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The wearable device couples a first parameter to be measured directly to the direct sensor. Conversely, the wearable device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the wearable device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device.
Abstract:
Systems and methods for a time-based optical pickoff for MEMS sensors are provided. In one embodiment, a method for an integrated waveguide time-based optical-pickoff sensor comprises: launching a light beam generated by a light source into an integrated waveguide optical-pickoff monolithically fabricated within a first substrate, the integrated waveguide optical-pickoff including an optical input port, a coupling port, and an optical output port; and detecting changes in an area of overlap between the coupling port and a moving sensor component separated from the coupling port by a gap by measuring an attenuation of the light beam at the optical output port, wherein the moving sensor component is moving in-plane with respect a surface of the first substrate comprising the coupling port and the coupling port is positioned to detect movement of an edge of the moving sensor component.
Abstract:
A MEMS structure includes a planar substrate, a support body coupled to the planar substrate, a fixed electrode coupled to the planar substrate and a moveable portion. The movable portion is spaced from and faces the fixed electrode. The movable electrode includes a movable weight and an intermediate frame surrounding an outer edge of the movable weight. A plurality of elastic supports connect the movable weight to the intermediate frame. The elastic supports are elastically deformable in a first direction extending parallel to the plane of the substrate such that the movable weight can move in the first direction. At least one torsion bar pivotally connects one end of the intermediate frame to the support body so as to allow the intermediate frame, and with it the movable weight, to pivot around an axis which extends parallel to the plane of the substrate and perpendicular to the first direction.