Abstract:
Disclosed are high purity synthetic silica material having an internal transmission at 193 nm of at least 99.65%/cm and method of preparing such material. The material is also featured by a high compositional homogeneity in a plane transverse to the intended optical axis. The soot-to-glass process for making the material includes a step of consolidating the soot preform in the presence of H2O and/or O2.
Abstract translation:公开了具有193nm以上的内透射率为至少99.65%/ cm 3的高纯度合成二氧化硅材料及其制备方法。 该材料的特征还在于横向于预期光轴的平面中具有高的组成均匀性。 用于制造材料的烟灰对玻璃工艺包括在H 2 O 2和/或O 2 2的存在下固化烟灰预制件的步骤。
Abstract:
An object of the present invention is to provide a method of highly purifying a glass body, which enables high purification of the glass body while decreasing deformation of the glass body at a high degree, to provide a highly purified glass body, and to provide a method and an apparatus for manufacturing a glass tube, which can obtain a highly purified glass tube. A method of highly purifying a glass body according to the present invention is to apply a voltage between electrodes 1 and 2, which make contact with the glass pipe 11, in a nearly radial direction of the glass pipe 11 while heating the glass pipe 11 to a temperature within a range less than 1300° C. Further, a method of manufacturing a glass tube according to the invention is to generate a voltage gradient in a radial direction of a glass tube 106 by applying voltages to the inner circumferential side and the outer circumferential side of the glass tube 106 when a glass rod 103 is gradually formed into the glass tube 106 by heating the glass rod 103 to soften the glass rod 103 and by bringing a boring jig 130 into contact with a softened portion of the glass rod 103.
Abstract:
This invention provides a high purity silica crucible having low impurity concentration in its inner portion, and its production method. The crucible, in which at least each content of Na and Li being contained in the depth of 1 mm from the inside surface is less than 0.05 ppm, is given by a production method of a high purity silica glass crucible, wherein a purity of the melted silica powder layer is increased by applying a voltage between a mold and an arc electrode to move impurity metals being contained in the melted silica glass layer to the outside, when the silica crucible is produced by arc plasma heating a raw material powder of silica in an inside surface of a hollow rotary mold. The method comprises, keeping an arc electrode potential of within ±500 V during an arc melting, applying a voltage of from −1000 V to −20000 V to a mold being insulated to the ground, and applying a high voltage to the un-melted silica powder layer of the outside.
Abstract:
There is disclosed a method for producing a synthetic fused silica member comprising vaporizing a raw material silane compound, hydrolyzing or oxidizing by combustion the vaporized silane compound in oxyhydrogen flame to form silica microparticles so that the silica microparticles should deposit on a rotating refractory carrier, and melting the silica microparticles during the deposition to form the synthetic fused silica member, wherein sulfur impurities are preliminarily removed from the raw material. According to the present invention, there are provided a synthetic fused silica member that does not emit yellow fluorescence at a wavelength of 560-580 nm even when it is irradiated with an ultraviolet ray by an excimer laser or the like, and hence can suitably be used for optical applications utilizing as a light source high energy ultraviolet rays such as those from excimer lasers, typically KrF and ArF excimer lasers, for example, use as a lens material for steppers and the like, and a method for producing the same, as well as an optical member such as lenses and photomasks produced from the synthetic fused silica material.
Abstract:
In a known optical component a cylindrical glass core of synthetic quartz glass contains hydroxyl groups, a maximum 200 wt.-ppm of chlorine, and no dopant in the form of a metal oxide. The glass core is axially enveloped by a glass mantle of doped quartz glass which has a lower refractive index than the glass core. Setting out from this, in order to offer an optical component of quartz glass for broad-band transmission, especially for broad-band spectroscopy, which is characterized by low attenuation over a broad range of wavelengths, it is proposed by the invention that the core glass contain less than 5 wt.-ppm of hydroxyl groups.
Abstract:
A method for producing a solar crucible includes providing a crucible base body of transparent or opaque fused silica having an inner wall, providing a dispersion containing amorphous SiO2 particles, applying a SiO2-containing slip layer to at least a part of the inner wall by using the dispersion, drying the slip layer to form a SiO2-containing grain layer and thermally densifying the SiO2-containing grain layer to form a diffusion barrier layer. The dispersion contains a dispersion liquid and amorphous SiO2 particles that form a coarse fraction and a fine fraction with SiO2 nanoparticles. The weight percentage of the SiO2 nanoparticles based on the solids content of the dispersion is in the range between 2 and 15% by weight. The SiO2-containing grain layer is thermally densified into the diffusion barrier layer through the heating up of the silicon in the crystal growing process.
Abstract:
To provide opaque quartz glass having no water absorbing properties and being excellent in infrared light shielding properties, and a method for its production. In the production of opaque quartz glass of the present invention, a fine amorphous silica powder and a pore forming agent are mixed, then molded and heated at a predetermined temperature, to obtain opaque quartz glass wherein contained pores are closed pores, the average pore size of pores is from 5 to 20 μm, and the content density of pores is high, whereby the heat shielding properties are high.
Abstract:
One aspect relates to a method for the production of synthetic quartz glass. Moreover, one aspect relates to a polyalkylsiloxane compound, which includes certain specifications with respect to chlorine content, metallic impurities content, and residual moisture, as well as the use thereof for the production of synthetic quartz glass. One aspect also relates to a synthetic quartz glass that can be obtained according to the method of one embodiment.
Abstract:
A fused silica glass article having a low absolute refractive index and low concentrations of hydroxyl groups, halogens, and metal having a low absolute refractive index. The glass article contains less than about 10 ppm protium-containing and deuterium-containing hydroxyl groups by weight and less than about 20 ppm halogens by weight. The silica glass article also has an absolute refractive index (ARI) less than or equal to 1.560820. In one embodiment, the ARI of the fused silica article is achieved by lowering the fictive temperature of the fused silica. A method of lowering the fictive temperature is also described.
Abstract:
For a substrate having fine convexoconcave patterns on its surface, the dimensions of the convexoconcave patterns in a vertical direction of a quartz glass substrate are controlled to be uniform with extreme accuracy and over the entire substrate surface. The quartz glass substrate is made to have a fictive temperature distribution of at most 40° C. and a halogen concentration of less than 400 ppm, and the etching rate of the surface of the quartz glass substrate is made uniform, whereby the dimensions of the convexoconcave patterns in a vertical direction of the quartz glass substrate are controlled to be uniform with good accuracy and over the entire substrate surface.