Abstract:
A mobile apparatus is provided for measuring photometric characteristics of airport marker lights. The mobile apparatus includes a measuring rod configured to be moved above the marker lights to be checked, in light beams emitted by these marker lights, and a device for measuring the distance between the measuring rod and the marker lights to be checked. The measuring rod carries at least one photometric sensor and includes a device for acquiring and processing the signals emitted by the photometric sensor or sensors during its movement, as a function of the distance measured between the measuring rod and the marker lights to be checked. The device for acquisition and processing is configured to generate a set of data representing photometric characteristics of each marker light checked.
Abstract:
A spectroscopic instrument comprising a compartment (2) for housing instrument components (3) and desiccant (4) to protect the instrument components, and a deformable container (5) having at least one wall portion which is movable within the compartment (2) so as to vary the volume of the compartment (2) that is occupied by the deformable container as the container is deformed. The interior of the deformable container (5) is in fluid communication with the surroundings of the instrument, such that a difference in pressure between the compartment and the surroundings tends to cause the deformable container to deform, moving the wall portion.
Abstract:
A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space. In addition, the variable transmission rate may be further dependent upon a rate of change of the total light intensity in the space.
Abstract:
Provided is a multi-wave band light sensor combined with a function of infrared ray (IR) sensing including a substrate, an IR sensing structure, a dielectric layer, and a multi-wave band light sensing structure. The substrate includes a first region and a second region. The IR sensing structure is in the substrate for sensing IR. The dielectric layer is on the IR sensing structure. The multi-wave band light sensing structure includes a first wave band light sensor, a second wave band light sensor, and a third wave band light sensor. The second wave band light sensor and the first wave band light sensor are overlapped and disposed on the IR sensing structure on the first region of the substrate from the bottom up. The third wave band light sensor is in the dielectric layer of the second region.
Abstract:
An optical element of an embodiment includes an optical element made of a material transparent to light, the optical element including: a back surface facing the front surface; and a connection surface. The front surface includes a recessed surface in a region facing the connection surface. The recessed surface has a point closest to the connection surface as a closest point, and has a first singular point other than the closest point.
Abstract:
An entry detection device includes first light marks and second light marks. A control signal corresponding to a part of the first light marks is an error detection code of the control signal corresponding to the other part of the first light marks. A first inspection value is generated based on a first part of a light receiving signal corresponding to the other part of the first light marks. A second inspection value is generated based on a reverse bit string of a third part of the light receiving signal corresponding to a part of the second light mark paired with the other part of the first light marks. An entry is detected based on the first inspection value and the second inspection value.
Abstract:
The present invention relates to a sensor arrangement to monitor at least one ambient parameter, the sensor arrangement comprising: a first layer exhibiting a first electrical conductivity, and at least a second layer exhibiting a second electrical conductivity different than the first electrical conductivity and being at least partially in direct contact with the first layer, wherein the first and the second layer in an initial configuration comprise different concentrations of a diffusible component, having an impact on the conductivity of the first and/or the second layer.
Abstract:
A sensor device for detecting moisture on a windscreen has a transmitter and a receiver and optics arranged between the transmitter and the receiver. The optics have an upper plane for connection to a windscreen, a decoupling region serving to decouple the electromagnetic rays from the optics into the windscreen, and a coupling region serving to couple the electromagnetic radiation from the windscreen into the optics, and which even for a small construction shall supply a usable signal. The decoupling region has at least one surface inclined relative to the upper plane of the optics.
Abstract:
A method of non-destructively determining the condition of a material, said method including providing an elongated probe containing a plurality of optical fibers, said elongated probe coupled to an infrared spectrometer, said tip of said elongated probe positioned near said material, said elongated probe including said tip having a width of less than about 2.0 mm; and, making an infrared spectroscopy measurement of said material by providing infrared light from said infrared spectrometer through at least one of said plurality of optical fibers and collecting at least a portion of said infrared light reflected from a material juxtaposed near said tip through at least another of said plurality of optical fibers to provide said reflected light to said infrared spectrometer.
Abstract:
Methods for controlling light transmission through a medium by transmitting light from a single spatial portion of an input optical field through the medium creating an output optical field, superposing the output optical field with a reference optical field creating an optical interference field, detecting an intensity of a spatial portion of a polarization component of the optical interference field and using the detected intensity to determine a value of an optical field amplitude and of an optical field phase for each of a plurality of spatial portions of the input optical field and for each of first and second orthogonal input polarization states of transmitted light entering the medium. The method may be used in the control of the transmission of light 1) through a medium, which is randomizing in amplitude, phase and/or polarization or 2) through a multi-mode fiber or for beam shaping, optical trapping and/or optical manipulation.