Abstract:
The present invention relates to an approach to locking the output wavelength of a laser that uses an etalon having non-parallel surfaces. Under this approach, the non-parallel etalon is formed from a readily available, low cost optical component, and may include an etalon with a wedged shape or with at least one curved surface. This approach offers significant advantages over the use of a planar etalon. It provides two degrees of freedom in alignment of the device, and so both the absolute wavelength and the spacing between the interference fringes can be independently adjusted. It also reduces the cost and difficulty of assembly, since it utilizes standard optical parts with wide tolerances. The invention may be used within a standard laser package. The invention also permits the laser to be tuned to a precise operating wavelength by setting various tuning signals according to values stored in memory.
Abstract:
Scanning based wavelength measurement systems which are suitable for both localised and distributed WDM, High Density WDM, and coherent systems are based around the use of a fixed cavity Fabry-Perot Etalon which when the output of a tuneable laser is passed through it produces a number of reference equispaced transmission maxima. These maxima are used in a Scanning Heterodyne or Scanning Filter based Spectrometer for detection of the wavelength position of the transmitter.
Abstract:
An optical pressure sensor is disclosed having a pressure sensing optical cavity. A temperature sensing optical cavity at the sensing head is used by an interrogator to correct a pressure signal for effects of temperature. The optical cavities may be, for example, Fabry Perot cavities in the sensor head.
Abstract:
A narrow band laser apparatus may include: a laser resonator; a pair of discharge electrodes; a power supply; a first wavelength measurement device configured to output a first measurement result; a second wavelength measurement device configured to output a second measurement result; and a control unit. The control unit calibrates the first measurement result, based on a difference between the second measurement result derived when the control unit controls the power supply to apply a pulsed voltage to the pair of discharge electrodes with a first repetition frequency and the second measurement result derived when the control unit controls the power supply to apply the pulsed voltage to the pair of discharge electrodes with a second repetition frequency, the second repetition frequency being higher than the first repetition frequency.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.
Abstract:
An optical pressure sensor is disclosed having a pressure sensing optical cavity. A temperature sensing optical cavity at the sensor head is used by an interrogator to correct a pressure signal for effects of temperature. The optical cavities may be, for example, Fabry Perot cavities in the sensor head.
Abstract:
A light wavelength meter (10) able to accept light into a light diverter (16) and impart to it a transverse displacement characteristic which can be detected in a light detection unit (20) connected to a processor (22). Optionally, a light diverger (18) may be provided to enhance angular resolution. The light diverter (16) and the light diverger (18) may either transmit or reflect the light. The light diverter (16) may particularly include a diffraction grating (116, 156), Fabry-Perot interferometer (216), multiple slit plate (316), or an acousto-optical unit (416).
Abstract:
A compact wavelength monitoring and control assembly for a narrow band (i.e., laser) source is provided, comprising two narrow bandpass, wavelength selective transmission filter elements of Fabry-Perot structure through which two separate collimated beams from a laser source are directed onto two photodetectors. The spacing of the multiple transmission maxima for one etalon is chosen to match that of the desired set of frequencies to be used for locking purposes. The spacing of the transmission maxima for the second etalon is used, in combination with a dielectric filter, to generate a wavelength fiducial to denote an absolute frequency. The spacing of the second etalon is chosen to be much wider than the frequency grid etalon. A control circuit processes the simultaneously acquired signals from the two detectors as the laser wavelength is varied. The device functions as an optical wavelength discriminator in which the detectors convert optical energy to current (or voltage) for a feedback loop for controlling the laser source. Any one of a large number of discrete, predetermined wavelengths may be chosen for locking using the same device. The system is compact and may be packaged within the same temperature controlled laser assembly for maximum performance and minimum circuit board space requirements.
Abstract:
A light wavelength meter (10) able to accept light into a light diverter (16) and impart to it a transverse displacement characteristic which can be detected in a light detection unit (20) connected to a processor (22). Optionally, a light diverger (18) may be provided to enhance angular resolution. The light diverter (16) and the light diverger (18) may either transmit or reflect the light. The light diverter (16) may particularly include a diffraction grating (116, 156), Fabry-Perot interferometer (216), multiple slit plate (316), or an acousto-optical unit (416).
Abstract:
According to the present disclosure, there is provided a device (2) and a method for measuring a wavelength for a laser device. The device (2) for measuring a wavelength for a laser device includes: a first optical path assembly and a second optical path assembly. The first optical path assembly and the second optical path assembly constitute a laser wavelength measurement optical path. The second optical path assembly includes: an FP etalon assembly (11) and an optical classifier (13). The homogenized laser beam passes through the FP etalon assembly (11) to generate an interference fringe. The optical classifier (13) is arranged after the FP etalon assembly (11) in the laser wavelength measurement optical path, and configured to deflect the laser beam passing through the FP etalon assembly (11). The FP etalon assembly (11) allows two FP etalons (FP1, FP2) to share the same optical path for an interference imaging, and therefore a compact structure having a small volume, a simple design, and a high stability are achieved. In cooperation with the optical classifier (13), a precise measurement for a laser wavelength may be achieved, and at the same time a wavelength measurement range is large. It is suitable for an online measurement for a laser wavelength and a corresponding closed-loop control feedback.