Abstract:
A method and a device for generating and for detecting a Raman spectrum enables an automated, or automatable, and at the same time quantitative SERD spectroscopy (for example concentration measurement series). To this end, during the SERD spectroscopy, a first spectrum and a second spectrum are standardized in relation to one another in terms of intensity values and a first difference spectrum is subsequently calculated, a second difference spectrum is calculated, the first difference spectrum is converted into a first transformation spectrum, the second difference spectrum is converted into a second transformation spectrum, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.
Abstract:
A method and a device for generating and for detecting a Raman spectrum enables an automated, or automatable, and at the same time quantitative SERD spectroscopy (for example concentration measurement series). To this end, during the SERD spectroscopy, a first spectrum and a second spectrum are standardized in relation to one another in terms of intensity values and a first difference spectrum is subsequently calculated, a second difference spectrum is calculated, the first difference spectrum is converted into a first transformation spectrum, the second difference spectrum is converted into a second transformation spectrum, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.
Abstract:
A correlation interferometric spectroscopy devices are described that detect the spectral characteristics of a sample wherein device consists of an electromagnetic radiation source for exciting a sample with photons; and a detector adapted to detect an arrival time of a photon at the detector and further adapted to detect a delay between the arrival time of different photons. The device may further consist of an autocorrelator adapted to analyze the between the arrival of photons at the detector. The device may also be used together with other spectral detection and characterizing systems, such as Raman spectroscopy and attenuated total reflectance spectroscopy. Also provided herein are methods, systems, and kits incorporating the correlation interferometric spectroscopy device.
Abstract:
The invention relates to a method for the qualitative and quantitative analysis of samples by optical emission spectroscopy with laser excitation (18), using a database created on single-element aqueous solutions all having the same pure element concentration, this database containing, for each element, the wavelengths of the emission lines and their respective intensities.
Abstract:
An optical absorption spectrometer is provided for determining the concentration of a substance within a sample. The optical absorption spectrometer comprises a first radiation source for supplying radiation to the sample to be measured; at least one cavity for containing the sample during measurement; and a detector assembly for detecting radiation transmitted along first and second optical paths through the sample, the length of the first optical path being greater than that of the second optical path.
Abstract:
A method is proposed for detecting at least one chemical compound V contained in a medium (312). The method comprises a verification step (420) which is used to determine whether V is contained in the medium (312). The method furthermore comprises an analysis step (424) in which a concentration c of the at least one chemical compound V is determined.The verification step comprises the following substeps: (a1) the medium (312) is exposed to a first analysis radiation (316) of a variable wavelength λ, the wavelength λ assuming at least two different values; (a2) at least one spectral response function A(λ) is generated with the aid of the radiation (324) absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the first analysis radiation (316); (a3) at least one spectral correlation function K(δλ) is formed by spectral comparison of the at least one spectral response function A(λ) with at least one pattern function R(λ+δλ), the at least one pattern function R(λ) representing a spectral measurement function of a medium (312) containing the chemical compound V and δλ being a coordinate shift; (a4) the at least one spectral correlation function K(δλ) is examined in a pattern recognition step (418), and a conclusion is made as to whether the at least one chemical compound V is contained in the medium (312); The analysis step (424) comprises the following substeps: (b1) the medium (312) is exposed to at least one second analysis radiation (318) having at least one excitation wavelength λEX; (b2) at least one spectral analysis function B(λEX,λRES) is generated with the aid of the radiation (326) of the response wavelength λRES absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the second analysis radiation (318) of the wavelength λEX and the concentration c is deduced therefrom.
Abstract:
A spectral correlator comprises a specimen and an optical device configured to collect light from the specimen and to optically determine a similarity of a received first spectra of the light collected from the first spectra and a second known spectra.
Abstract:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate light, the wavelength of said light source being tuned with the spectral signature of methane, whereby the light can be directed onto a measuring field. The detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve the remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stable structure. According to the invention, the light source generates light with a wavelength at which methane is absorbed, wherein the wavelength lies between 3200 nm and 3300 nm, and the light source has an optical parametric oscillator with injection seeding, the oscillator being associated with a pump laser.
Abstract:
A system for tomographic sounding using infrared radiation, said system comprising a plurality of gas correlation cameras, each of said cameras comprising at least two gas correlation cells, one of said cells filled with a first gas capable of absorbing infrared radiation at one infrared band and another of said cells filled with a second first gas capable of absorbing infrared radiation at another inked band, and a camera with imaging optics for determining both the spectral and energy content of said first infrared band and the spectral and energy content of said second infrared band.
Abstract:
A remote sensing method for detecting and analyzing gases, vapors and flame plumes using an imaging spectrometer. The spectrometric instrument uses Image Multispectral Sensing (IMSS) technology, enhanced by advanced imaging processing techniques and micro-miniature circuitry. These enhancements provide a portable instrument with the capability to remotely detect and image gases, including gas leaks. The technology also provides an analysis of the gas including chemical species and concentrations. The instrument can also remotely detect, image and analyze flames and plumes in the same manner, providing an analysis of the chemical species and concentrations in the flame. Advanced image processing techniques are used to provide gas and plume images and analysis to the operator. These processing algorithms are implemented in micro-miniature circuits such as digital signal processors (DSP's) and field programmable gate arrays (FPGA's) to provide a field portable instrument.