Abstract:
An X-ray generation device is provided with an electron gun unit for emitting an electron beam, and a target unit having a substrate comprised of diamond, and a target body comprised of a material for generating X-rays with incidence of the electron beam thereto and buried in close contact in the substrate. An outer diameter of the target body is in the range of 0.05 to 1 μm. An outer diameter of an irradiation field of the electron beam on the target unit is in the range of 1.1 to 2.5 times the outer diameter of the target body. The X-ray generation device irradiates the target body with the electron beam so that the target body is included in the irradiation field, thereby to generate X-rays from the target body.
Abstract:
A radiation emission target includes a target layer that generates radiation when irradiated with an electron beam and a substrate composed of diamond, the substrate supporting the target layer. The substrate has a Knoop hardness of 60 GPa or more and 150 GPa or less.
Abstract:
A radiation source which can emit X-ray flux using electron beam currents from a cathode array formed on the window through which the radiation will exit the source. The source can be made in formats which are compact or flat compared with prior art radiation sources. X-ray flux produced by the source can be used for such purposes as radiation imaging, sterilization, decontamination of biohazards or photolithography.
Abstract:
A radiation-transmissive type target structure includes a target layer formed on a substrate. The target layer has a thickness equal to or less than 20 μm, and is configured to generate radiation in response to irradiation of electrons. A surface of the target layer is formed with projecting portions and depressed portions, the depressed portions have a depth of at least half the thickness of the target layer. Advantageously, separation of the target layer at an interface between the substrate and the target layer is substantially prevented. A radiation generating apparatus and a radiography system equipped with the target structure are also disclosed.
Abstract:
Provided are a radiation emission target and a radiation generating apparatus that reduce the variation in the output due to operation and temperature history by maintaining stable adhesion of the layered radiation target and achieve stable radiation emission characteristics.The radiation target includes a supporting substrate, a target layer that emits a radiation when irradiated with an electron beam, and an interlayer located between the supporting substrate and the target layer. The interlayer has a thickness of 1 μm or less and contains titanium as a main component. At least part of the titanium shows the β-phase at 400° C. or less.
Abstract:
The present disclosure describes a panoramic irradiator comprising at least one X-ray source inside a shielded enclosure, the one or more sources each operable to emit X-ray flux across an area substantially equal to the proximate facing surface area of material placed inside the enclosure to be irradiated. The irradiator may have multiple flat panel X-ray sources disposed, designed or operated so as to provide uniform flux to the material being irradiated. The advantages of the irradiator of the present disclosure include compactness, uniform flux doses, simplified thermal management, efficient shielding and safety, the ability to operate at high power levels for sustained periods and high throughput.
Abstract:
A micro X-ray source comprising a target acting as anode, and a cathode, which during operation interacts with the target and functions as electron source, wherein the target is embodied as a metal foil possessing a spot where the electrons from the electron source arrive, and the metal foil being locally thinner at the spot.
Abstract:
A compact x-ray source includes an electron beam source with a metallic film on a diamond window. The metallic film, which may be copper or scandium, absorbs the electron beams and produces k-alpha x-rays. The diamond window is a single crystal of diamond with a crystallographic orientation to diffract the x-rays, thereby producing a monochromatic and well collimated x-ray beam. The orientation of the crystal lattice may be configured to produce multiple x-ray beams. A plurality of electron beam sources may also be used to generate multiple x-ray beams. A detector is used to receive the x-ray beam after it interacts with a sample to be measured.
Abstract:
A radiation source which can emit X-ray flux, UV-C flux and other forms of radiation uses electron beam current from a cathode array formed on the window through which the radiation will exit the source. The source can be made in formats which are compact or flat compared with prior art radiation sources. X-ray, UV-C and other radiative flux produced by the source can be used for such purposes as radiation imaging, sterilization, decontamination of biohazards, UV curing or photolithography.
Abstract:
An x-ray tube and method of operating include a vacuum chamber vessel and a source of an electron beam inside the vacuum chamber vessel. A target disposed inside the vacuum chamber vessel includes a substrate and one or more deposits attached to the substrate. Each different deposit includes an atomic element having a different atomic number. The x-ray tube also includes a means for directing the electron beam to a selectable deposit of multiple deposits. The substrate material can be selected with better vacuum sustaining strength, x-ray transparency, melting point, and thermal conductivity than a deposit. The substrate may be cooled by an integrated cooling system. The x-ray tube allows a selectable x-ray frequency to be produced with enhanced economy of power, reduced moving parts, and reduced size. For improved bone mass applications, one of the deposits has a k-fluorescence energy less than about 53 thousand electron volts.