Abstract:
A transmissive-type target includes a target layer, and a transmissive substrate configured to support the target layer. The transmissive substrate has a pair of surfaces facing each other and is formed of polycrystalline diamond. In the transmissive substrate, one of the pair of surfaces includes polycrystalline diamond having a first average crystal grain diameter which is smaller than a second average crystal grain diameter of polycrystalline diamond included on the other surface opposing thereto. The target layer is supported by any one of the pair of surfaces.
Abstract:
An X-ray generator capable of reliably reducing an X-ray focal spot size without depending on the focal spot size of an electron beam on a target. Providing, within the irradiation range of an electron beam B of a target laminated structure 3 comprising a target 2 and an X-ray irradiation window 1, a low X-ray absorptivity region 3a of localized low X-ray absorptivity in the irradiation direction of the electron beam B results in the suppression of emission to the outside of X-rays from among the X-rays generated as a result of the irradiation of the electron beam B onto the target 2 that are from regions other than the low X-ray absorptivity region 3a, and an X-ray focal spot of a size corresponding to the size of the low X-ray absorptivity region 3a is obtained regardless of the size of the irradiation region of the electron beam B.
Abstract:
Provided is a radiation generating apparatus, including a radiation generating unit for emitting radiation through a transmission window, and a light projecting/sighting device including a light source for emitting visible light and a reflection mirror. At least one of the transmission window and the reflection mirror has variations in thickness for reducing shading of radiation which irradiates a radiation irradiation field.
Abstract:
A transmission type X-ray tube includes an electrode lead holding a cathode filament and a stem unit to which a sealing member, an exhaust tube, and the like are attached by brazing, and an irradiation window frame having an X-ray irradiation window attached by brazing. The other end side of the sealing member is attached to an open end of the irradiation window frame by welding. Thus, it is possible to obtain a high-quality transmission type X-ray tube having a long service life at a low cost.
Abstract:
X-ray tomosynthesis device includes a target and a device configured for directing a particle beam of electrically charged particles onto the target which emits X-ray radiation for irradiating a sample to be examined when the electrically charged particles strike the target, in use. The target includes at least one support element on which a plurality of mutually spaced target elements are provided, and each mutually spaced target element only partially covers the at least one support element. A deflection device is provided, and the deflection device is configured for causing the particle beam to be deflected in order to strike the plurality of mutually spaced target elements, in use.
Abstract:
An inspection apparatus for inspecting an inspection target object, includes an X-ray generation tube having a target including an X ray generation portion that generates X-rays by irradiation with an electron beam, and configured to emit X-rays to an inspection target surface of the inspection target object, an X-ray detector configured to detect X-rays emitted from a foreign substance existing on the inspection target surface irradiated with the X-rays from the X ray generation portion and totally reflected by the inspection target surface, and an adjustment mechanism configured to adjust a relative position between the inspection target surface and the X-ray detector.
Abstract:
An x-ray apparatus includes a vacuum chamber that includes a window for exit of x-rays. Electrons are generated at a cathode within the vacuum chamber and accelerated toward a target anode associated with the window. An x-ray generating layer is included as a surface of the target anode to receive the electrons emitted by the cathode and to create x-rays. A blocking path blocks over 70% of the free electrons reaching said target anode from continuing on to exit through the window, while allowing x-rays leaving the x-ray generating layer to continue along the selectively blocking path to exit through the window. The x-ray apparatus is capable of operating at low voltage and relatively high power to reduce the necessary shielding and the corresponding weight of the apparatus yet allow more ready absorption of x-rays by items being irradiated.
Abstract:
Provided are an on-chip miniature X-ray source and a method for manufacturing the same. The on-chip miniature X-ray source includes: an on-chip miniature electron source; a first insulating spacer provided on an electron-emitting side of the on-chip miniature electron source, where the first insulating spacer has a cavity structure; and an anode provided on the first insulating spacer, where a closed vacuum cavity is formed between the on-chip miniature electron source and the anode. The on-chip miniature X-ray source has the advantages of stable X-ray dose, low working requirements for vacuum, fast switch response, capability of integration and batch fabrication, and can be used in various types of small and portable X-ray detection, analysis and treatment devices.
Abstract:
According to some aspects, a carrier configured for use with a broadband x-ray source comprising an electron source and a primary target arranged to receive electrons from the electron source to produce broadband x-ray radiation in response to electrons impinging on the primary target is provided. The carrier comprising a housing configured to be removeably coupled to the broadband x-ray source and configured to accommodate a secondary target capable of producing monochromatic x-ray radiation in response to incident broadband x-ray radiation, the housing comprising a transmissive portion configured to allow broadband x-ray radiation to be transmitted to the secondary target when present, and a blocking portion configured to absorb broadband x-ray radiation.
Abstract:
An X-ray generation tube including a magnetic deflection portion configured to deflect an electron beam to reduce lines of magnetic force extending to the outside of the tube, where a subject is arranged, by placement of a magnetic shielding portion including a portion that is closer to an anode than the magnetic deflection portion in a tube axial direction and that is closer to the tube center axis than the magnetic deflection portion in a tube radial direction.