Abstract:
An ionization gauge to measure pressure, while controlling the location of deposits resulting from sputtering when operating at high pressure, includes at least one electron source that emits electrons, and an anode that defines an ionization volume. The ionization gauge also includes a collector electrode that collects ions formed by collisions between the electrons and gas molecules and atoms in the ionization volume, to provide a gas pressure output. The electron source can be positioned at an end of the ionization volume, such that the exposure of the electron source to atom flux sputtered off the collector electrode and envelope surface is minimized. Alternatively, the ionization gauge can include a first shade outside of the ionization volume, the first shade being located between the electron source and the collector electrode, and, optionally, a second shade between the envelope and the electron source, such that atoms sputtered off the envelope are inhibited from depositing on the electron source.
Abstract:
A Long Lifetime Cold Cathode Ionization Vacuum Gauge Design with an extended anode electrode having an axially directed tip, a cathode electrode, and a baffle structure. The axially directed tip of the anode electrode can have a rounded exterior with a diameter at least 10% greater than the diameter of the anode electrode.
Abstract:
A charged particle beam instrument is offered which can easily perform an in situ observation in a gaseous atmosphere. The charged particle beam instrument (100) is used to perform an observation of a specimen (S) placed in a gaseous atmosphere and has a specimen chamber (2), a gas supply portion (6) for supplying a gas into the specimen chamber (2), a venting portion (7) for venting the specimen chamber (2), a gaseous environment adjuster (4), and a gas controller (812) for controlling the gaseous environment adjuster (4). This adjuster (4) has a gas inflow rate adjusting valve (40) for adjusting the flow rate of the gas supplied into the specimen chamber (2) and a first vacuum gauge (CG1) for measuring the pressure of the gas supplied into the specimen chamber (2). The gas controller (812) sets a target value of pressure for the gas supplied into the specimen chamber (2) based on a predetermined relational expression indicating a relationship between the reading of the first vacuum gauge (CG1) and the pressure inside the specimen chamber (2) and on a corrective coefficient for correcting the reading of the first vacuum gauge (CG1) according to the species of the gas supplied into the specimen chamber (2) and controls the gas inflow rate adjusting valve (40) such that the reading of the first vacuum gauge (CG1) reaches the target value of pressure.
Abstract:
An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
Abstract:
A gas analyzer using a quadrupole mass spectrometric method etc. is provided with an ionizer to ionize a sample gas, a first ion detector and a second ion detector each configured to detect a respective ion from ionizer, and each being disposed a respective distance from the ionizer on an opposite side of the ionizer, the respective distances being different from each other, a filter interposed between the ionizer and the first ion detector to selectively allow ions from the ionizer to pass therethrough, and an arithmetic device to correct a partial pressure of a specific component obtained from the first ion detector and selected by the filter by using a first total pressure of the sample gas obtained from the first ion detector and a second total pressure of the sample gas obtained from the second ion detector.
Abstract:
An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
Abstract:
A photo-ionization detector (PID) including two detection units controls gas flows through the ionization chambers of the detection units for real-time self-cleaning and measurement. Operation of the PID can include flowing gas through the ionization chamber of one detection unit to measure the volatile gas concentration while stopping gas flow through the ionization chamber of the other detection unit. A UV lamp converts oxygen contained in the closed ionization chamber to ozone, which removes contamination in the closed ionization chamber, Continuous gas flows can alternate between one ionization chamber to the other. Alternatively, a PID with only one gas detection unit intermittently interrupts the flow of the ambient gas in the ionization chamber.