Abstract:
Disclosed is a wireless gauge apparatus and manufacturing method thereof. The wireless gauge apparatus comprises a printed circuit board comprising a wireless transceiver and at least one sensor, a power source electrically coupled with the printed circuit board, an antenna electrically coupled with the wireless transceiver and a casing encasing the printed circuit board, the power source and the antenna. The casing is made of polyurethane having a density of 0.8-1.2 g/cm3. The antenna is surrounded by a protective layer having a thickness of 4-8 mm, a density of at most 50 kg/m3 and a dielectric constant of 1-2.7.
Abstract:
A resin composition, a printed circuit board using the composition, and a method of manufacturing the printed circuit board. The resin composition includes: a photopolymerizable compound, such as one having an ethylenically unsaturated bond which is polymerizable in a molecule, a photoinitiator, and a surface-modified silica by an alkyl sulfonated tetrazole compound.
Abstract:
A portable input device includes a flexible main body, a sensing electrode layer, a protection layer and a memory metal body. The flexible main body has a first face and a second face. The sensing electrode layer has a first sensing electrode and a second sensing electrode disposed on the second face of the flexible main body. The protection layer is correspondingly disposed on the second face of the flexible main body to cover the sensing electrode layer. The memory metal body is disposed on one face of the flexible main body or one face of the protection layer for curling the flexible main body for easy carry or storage. Accordingly, the convenient portable input device is flexible, lightweight and thin for a user to conveniently carry.
Abstract:
A conductive paste for screen application has a mixture of copper flake having a mean diameter between 1.0-8.0 micrometers and copper nanoparticles having a mean diameter from 10 nm to 100 nm, wherein the ratio of the copper flake to the nanoparticles is between 2:1 and 5:1 by weight; and a resin comprising about half of a polymer having a molecular weight in excess of 10,000 and one or more solvents.
Abstract:
A resin for thermal imprint include a cyclic-olefin-based thermoplastic resin that contains at least one of skeletons represented by the following chemical equation 1 or the following chemical equation 2 in a main chain. The glass transition temperature Tg (° C.) and the value ([M]) of MFR at 260° C. satisfy the following equation 1, and [M]>10. The thermal imprint characteristics (transferability, mold release characteristic, and the like) are superior and the productivity (throughput) is improved. Tg(° C.)
Abstract:
A resin composition includes (A) 100 parts by weight of poly(phenylene oxide) resin with styrene end group; (B) 5 to 75 parts by weight of olefin copolymer; and (C) 1 to 150 parts by weight of cyanate resin with poly(phenylene oxide) functional group. The resin composition is characterized by specific composition and proportion conducive to achieving a low dielectric constant, a low dielectric loss, and a high thermal tolerance and preparing a prepreg or a resin film, thereby being applicable to copper-clad laminates and printed circuit boards.
Abstract:
Provided is a thermosetting resin composition which can be used for the production of printed circuit boards, having good dielectric properties in high frequency bands so that transmission loss can be significantly lowered, having excellent heat resistance after moisture absorption and thermal expansion properties, and satisfying peeling strength between the resin composition and metal foil.The present invention relates to a thermosetting resin composition of a semi-IPN composite, comprising (A) a polyphenylene ether, and a prepolymer formed from (B) a chemically unmodified butadiene polymer containing 40% or more of a 1,2-butadiene unit having a 1,2-vinyl group in a side chain of a molecule and (C) a crosslinking agent, in a compatibilized and uncured state; and a resin varnish, a prepreg and a metal clad laminated board using the same.
Abstract:
A composite material, a high-frequency circuit substrate made from the composite material, and a method of making the high-frequency circuit substrate. The composite material includes: a thermosetting composition including a butadiene styrene copolymer resin with a molecular weight less than 11,000 containing more than 60 percent of vinyl, a polybutadiene resin with polarity groups containing more than 60 percent vinyl, and a maleic anhydride grafted polybutadiene styrene copolymer with a molecular weight of more than 50,000; a fiberglass cloth; a powder filler; and a cure initiator. The composite material permits easy manufacture of the prepreg and high bonding of the copper foil. The high-frequency circuit substrate made from the composite material has low dielectric constant, low dielectric loss tangent, and excellent heat resistance, and is convenient for the processing operation. The composite material is suitable for making the circuit substrate.
Abstract:
A circuit subassembly, comprising: a conductive layer, a dielectric layer formed from a thermosetting composition, wherein the thermosetting composition comprises, based on the total weight of the thermosetting composition a polybutadiene or polyisoprene resin, about 30 to about 70 percent by weight of a magnesium hydroxide having less than about 1000 ppm of ionic contaminants, and about 5 to about 15 percent by weight of a nitrogen-containing compound, wherein the nitrogen-containing compound comprises at least about 15 weight percent of nitrogen; and an adhesive layer disposed between and in intimate contact with the conductive layer and the dielectric layer, wherein the adhesive comprises a poly(arylene ether), wherein the circuit subassembly has a UL-94 rating of at least V-1.