Abstract:
A printed circuit board is disclosed. The printed circuit board in accordance with an embodiment of the present invention can include an insulation substrate, a first ground, which is formed on one surface of the insulation substrate and connected to a first power source, a second ground, which is formed on one surface of the insulation substrate and connected to a second power source, a separator, which separates the first ground from the second ground, a first signal line, which is stacked on at least one of the first ground and the second ground, and a second signal line, which is stacked on at least one of the first ground and the second ground and is adjacent to the first signal line. The separator can include a curved part, which is bent in between the first signal line and the second signal line.
Abstract:
There is provided a method of manufacturing a concave connector substrate that has high connection accuracy, a low manufacturing cost, and high flexibility in design, can ensure stable repeated use, and significantly improve use convenience.A method of manufacturing a concave connector substrate includes: a step of preparing a guide substrate having a guide/holding region that guides a plate-shaped connector to a connection position and holds the plate-shaped connector at the connection position and a cut portion for removing a section having a shape corresponding to the guide/holding region on at least one side; a step of arranging and aligning two wiring substrates, each having wiring lines and through hole connection portions that are electrically connected to the wiring lines, with both surfaces of the guide substrate, and applying an adhesive to a predetermined region of the guide substrate to bond the wiring substrates to the guide substrate; a step of bending a portion of the wiring substrate toward the inside of the cut portion of the guide substrate and bringing the wiring lines disposed in the bent portion into pressure contact with the inside of the cut portion; and a step of removing a section inside the cut portion to form the guide/holding region.
Abstract:
A single-fiber bidirectional optical transmitter/receiver includes a single-fiber bidirectional optical transmission/reception device. A circuit board has a signal processing circuit and a drive circuit configured to drive the single-fiber bidirectional optical transmission/reception device. A main housing accommodates the single-fiber bidirectional optical transmission/reception device and the circuit board. A ground part of a reception side of the single-fiber bidirectional optical transmission/reception device is electrically connected to a ground part of a transmission side of the single-fiber bidirectional optical transmission/reception device through a ground wiring pattern formed on a flexible printed board.
Abstract:
An electronic apparatus includes an outer cover member, an internal structure member, first and second external connection connectors, and first and second printed circuit boards. The first printed circuit board has a first surface on which the first external connector is mounted thereon, a signal pattern of the first external connector is formed on the first surface, and a second surface. The second printed circuit board has a first surface on which the second external connector is mounted thereon, a signal pattern of the second external connector is formed on the first surface, and a second surface. Ground patterns are formed on the second surfaces of the printed circuit boards. The first and second external connectors overlap and are arranged in a space surrounded by the outer cover member and the internal structure member so that the second surfaces of the first and second printed circuit boards face each other.
Abstract:
A hybrid electromagnetic bandgap (EBG) structure for broadband suppression of noise on printed wiring boards includes an array of coplanar patches interconnected into a grid by series inductances, and a corresponding array of shunt LC networks connecting the coplanar patches to a second conductive plane. This combination of series inductances and shunt resonant vias lowers the cutoff frequency for the fundamental stopband. The series inductances and shunt capacitances may be implemented using surface mount component technology, or printed traces. Patches may also be interconnected by coplanar coupled transmission lines. The even and odd mode impedances of the coupled lines may be increased by forming slots in the second conductive plane disposed opposite to the transmission line, lowering the cutoff frequency and increasing the bandwidth of the fundamental stopband. Coplanar EBG structures may be integrated into power distribution networks of printed wiring boards for broadband suppression of electromagnetic noise.
Abstract:
A circuit board may include first and second sides, a plurality of circuit board layers between the sides, and a plurality of signal traces located in respective circuit board layers. The circuit board layers and the signal traces may extend from a first component connection region at the first side of the circuit board to a second component connection region at the first side of the circuit board. The signal traces may thus form stubless signal paths through the circuit board between the component connection regions. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
A single-fiber bidirectional optical transmitter/receiver includes a single-fiber bidirectional optical transmission/reception device. A circuit board has a signal processing circuit and a drive circuit configured to drive the single-fiber bidirectional optical transmission/reception device. A main housing accommodates the single-fiber bidirectional optical transmission/reception device and the circuit board. A ground part of a reception side of the single-fiber bidirectional optical transmission/reception device is electrically connected to a ground part of a transmission side of the single-fiber bidirectional optical transmission/reception device through a ground wiring pattern formed on a flexible printed board.
Abstract:
A sub-mount adapted for AC and DC operation of devices mountable thereon, the sub-mount including a base substrate including a first surface and a second surface different from the first surface, a conductive pattern on the first surface, a first pair and a second pair of first and second electrodes on the second surface, and vias extending through the base substrate between the first and second surfaces, wherein the conductive pattern includes a first set of mounting portions and two via portions along a first electrical path between the first pair of first and second electrodes, and a second set of mounting portions and two via portions along a second electrical path between the second pair of first and second electrodes, the via portions connecting respective portions of the conductive pattern to respective electrodes of the first and second pair of first and second electrodes through the vias.
Abstract:
A hybrid electromagnetic bandgap (EBG) structure for broadband suppression of noise on printed wiring boards includes an array of coplanar patches interconnected into a grid by series inductances, and a corresponding array of shunt LC networks connecting the coplanar patches to a second conductive plane. This combination of series inductances and shunt resonant vias lowers the cutoff frequency for the fundamental stopband. The series inductances and shunt capacitances may be implemented using surface mount component technology, or printed traces. Patches may also be interconnected by coplanar coupled transmission lines. The even and odd mode impedances of the coupled lines may be increased by forming slots in the second conductive plane disposed opposite to the transmission line, lowering the cutoff frequency and increasing the bandwidth of the fundamental stopband. Coplanar EBG structures may be integrated into power distribution networks of printed wiring boards for broadband suppression of electromagnetic noise.
Abstract:
A bendable LED planar light source structure, a flexible substrate therefore, and a manufacturing method thereof are provided. The flexible substrate has metal layers on both sides, where the metal layer on one side has a circuit layout, and the metal layer on the other side has a pattern structure or a whole metal coating with reflecting and scattering characteristics. Meanwhile, bonding pads are provided on the same side or opposite side as the metal layer with the circuit layout, and an array of LED dies is bonded with the bonding pads through wire bonding or flip chip bonding, such that the LED dies are conducted with current through the circuit layout on the flexible substrate, so as to form a planar light source.