Abstract:
Disclosed herein are an electromagnetic bandgap structure and a printed circuit board having the same. The bandgap structure includes a conductive layer including a plurality of conductive plates; and a metal layer disposed over or under the conductive layer and including a stitching pattern to electrically connect a first conductive plate to a second conductive plate of the plurality of conductive plates. The bandgap structure includes a spiral stitching pattern formed in a metal layer different from the conductive layer, thus offering a stop-band having a desired bandwidth in a compact structure.
Abstract:
A multilayered printed circuit board including a substrate, a multilayered structure built thereon and having conductor circuits and interlaminar resin insulating layers in an alternate fashion, and one or more stack-via structures including via-holes stacked one another and electrically connected to the conductor circuits through the insulating layers. Each of the via-holes includes a land portion formed on a respective one of the insulating layers and a filled via structure portion filling an opening of the respective one of the insulating layers with a metal layer such that the via-holes are stacked one another immediately above the filled via structure portion of each via-hole, the via-holes include the outermost layer via-hole in the outermost layer of the insulating layers, and one or more via-holes have the land portion having the land diameter which is larger than the land diameter of the land portion of the outermost layer via-hole.
Abstract:
According to one embodiment of the invention, a circuit board comprises a conductive layer including a land portion and a line portion connected to the land portion, and; a conductor connected to a surface of the land portion. A planar shape of the connected portion between the conductor and the land portion has a elongated shape along a width direction of the line portion. A part of the connected portion is located within an imaginary region formed by imaginarily extending the line portion toward the land portion.
Abstract:
An EMI noise reduction board using an electromagnetic bandgap structure is disclosed. In the EMI noise reduction board according to an embodiment of the present invention, an electromagnetic bandgap structure having band stop frequency properties can be inserted into an inner portion of the board so as to shield an EMI noise, in which the portion corresponds to an edge of the board and in which the EMI noise is conducted from the inside to the edge of the board and radiates to the outside of the board.
Abstract:
An EMI noise reduction board is disclosed. The electromagnetic interference (EMI) noise reduction board having an electromagnetic bandgap structure for shielding a noise includes: a first area having a ground layer and a power layer; a second area placed in a side portion of the first area having an electromagnetic bandgap structure therein. The electromagnetic bandgap structure includes: a plurality of first conductive plates and a plurality of second conductive plates placed on a same planar surface along the side portion of the first area; and a stitching via configured to electrically connect the first conductive plate to the second conductive plate through a planar surface that is different from the first conductive plate and the second conductive plate.
Abstract:
In accordance with a first embodiment, the present invention provides a circuit substrate comprising a first surface; a second surface; a first via having a first end near said first surface and a second end near said second surface; a second via having a first end near said first surface and a second end near said second surface; a first conductive element electrically coupling said first end of said first via and said first end of said second via; a second conductive element electrically coupling said second end of said first via and said second end of said second via; an input signal line coupled to said first via; and an output signal line coupled to said second via.
Abstract:
A circuit board including a first patterned metal layer and a second patterned metal layer is provided. The first patterned metal layer has metal blocks and spiral structures. A gap is kept between any two adjacent metal blocks. Each of the spiral structures is electrically connected between any two adjacent metal blocks. The second patterned metal layer is disposed beside the first patterned metal layer and has jumper segments. Each of the jumper segments has a first end and a second end opposite to the first end. Each of the spiral structures has an outer end and an inner end. The outer end is connected to one of the two adjacent metal blocks. The inner end is electrically connected to the first end of one of the jumper segments, and the second end of the jumper segment is electrically connected to the other one of the two the metal blocks.
Abstract:
Techniques for optimizing application specific integrated circuit (ASIC) and other IC pin assignment corresponding to a high density interconnect (HDI) printed circuit board (PCB) layout are provided. Applying the techniques described herein, pin assignments may be systematically and strategically planned, for example, in an effort to reduce the PCB layer count and associated cost, increase signal integrity and speed, reduce the surface area used by an ASIC and its support circuitry, reduce plane perforations, and reduce via crosstalk when compared to conventional designs with an ASIC mounted on a multilayered PCB.
Abstract:
A printed wiring board having an insulating core; a plurality of vias having axes parallel to and at equal distance from a reference axis and passing through the core; a first conductive film formed on a front surface of the core from the reference axis to each of the individual vias; a first insulating film stacked on the front surface of the core and covering the first conductive film; a first connecting via having an axis identical to the reference axis and passing through the first stacked film; a second conductive film formed on a back surface of the core from the reference axis to each of the individual vias; a second insulating film stacked on the back surface of the core and covering the second conductive film; and a second connecting via having an axis identical to the reference axis and passing through the second stacked film.
Abstract:
A spacer-connector and connection arrangements between daughter boards and motherboards are disclosed. Assemblies may include a daughter board one or more spacer-connectors spacing the daughter board above a motherboard and conductive elastomers providing electrical connections between the daughter board and spacer-connector and between the spacer-connector and the motherboard. The spacer-connector may include ground, power, digital and/or controlled impedance RF pathways to conduct signals between the daughter board to the mother board.