Abstract:
A standoff contact array is disposed between a mounting substrate of a flip-chip package and a board. The standoff contact array is formable by mating a low-profile solder bump on the mounting substrate with a low-profile solder paste on the board. Thereafter, the standoff contact array is formed by reflowing the low-profile solder paste on the board against the low-profile solder bump on the mounting substrate.
Abstract:
Solder ball assembly for a semiconductor device and method of fabricating the same is described. In one example, a solder mask is formed on a substrate having an aperture exposing at least a portion of a conductive pad of the substrate. A solder pillar is formed in the aperture and in electrical communication with the conductive pad. An insulating layer is formed on the solder mask exposing at least a portion of the solder pillar. The exposed portion of the solder pillar is removed to define a mounting surface. A solder ball is formed on the mounting surface in electrical communication with the solder pillar. The solder pillar may include high-temperature solder having a melting point higher than that of the solder ball.
Abstract:
A flip-chip package structure is disclosed, which comprises: a packaging substrate having an upper surface and a plurality of conductive pads formed on the upper surface; a semiconductor chip having an active surface and a plurality of electrode pads formed on the active surface; and a plurality of first solder bumps; wherein each first solder bump connects to an electrode pad and a conductive pad, and each first solder bump contains a solid grain.
Abstract:
Certain examples disclosed herein are directed to materials that are designed for use in interconnects of electrical devices such as, for example, printed circuit boards and solar cells. In certain examples, a two-step solder may be used to reduce stresses on the materials used in the production of the electrical devices.
Abstract:
In some example embodiments, a method includes engaging a first contact on a motherboard with a second contact on an electronic package. A portion of one of the first and second contacts is covered with an interlayer that has a lower melting temperature than both of the first and second contacts. The method further includes bonding the first contact to the second contact by melting the interlayer to diffuse the interlayer into the first and second contacts. The bonded first and second contacts have a higher melting temperature than the interlayer before melting. In other example embodiments, an electronic assembly includes a motherboard having a first contact that is bonded to a second contact on an electronic package. An interlayer is diffused within the first and second contacts such that they have a higher melting temperature than the interlayer before the interlayer is diffused into the first and second contacts.
Abstract:
An improved structure of circuit board, according to the present invention, involves sealing a conductive passageway on a circuit board by use of a spacer disposed in a solder paste. A welding pad is disposed on the conductive passageway so that an electrical terminal is capable of being soldered into the conductive passageway directly. The improved structure of circuit board is capable of stopping the solder paste from entering into the conductive passageway, thus shortening the electrical wiring pathway between the electrical terminal and the circuit board effectively, so as to improve the electrical conductivity between the electrical terminal and the printed circuit board.
Abstract:
An improved structure of circuit board, according to the present invention, involves sealing a conductive passageway on a circuit board by use of a spacer disposed in a solder paste. A welding pad is disposed on the conductive passageway so that an electrical terminal is capable of being soldered into the conductive passageway directly. The improved structure of circuit board is capable of stopping the solder paste from entering into the conductive passageway, thus shortening the electrical wiring pathway between the electrical terminal and the circuit board effectively, so as to improve the electrical conductivity between the electrical terminal and the printed circuit board.
Abstract:
A touch screen system includes a touch panel to input image signals, a touch controller to drive the touch panel, an extension between the touch panel and the touch controller, and an anisotropic conductive film electrically interconnecting the extension to the touch controller.
Abstract:
A microelectronic assembly includes a first microelectronic element having a contact bearing face and at least one contact accessible at the contact bearing face, and a second microelectronic element opposing the first microelectronic element, the second microelectronic element having a first surface including at least one lead extending over the first surface. The microelectronic assembly includes the first fusible material engaging the at least one contact of the first microelectronic element, and a second fusible material engaging the at least one lead, whereby one of the first and second fusible materials has a higher melting temperature and one of the first and second fusible materials has a lower melting temperature. The first and second microelectronic elements are juxtaposed with one another so that the first and second fusible materials are in substantial alignment with one another, with one of the first and second fusible materials in a liquid state and one of the first and second fusible materials in a solid state.
Abstract:
A semiconductor device comprises columnar electrodes including columnar portions and ball-shaped low-melting point layers joined to the top surfaces of columnar portions. The amount of plating of the low-melting point layer and the cross-sectional area of the columnar portion are adjusted in such a way that the relationship represented by A≦1.3×B1.5 is satisfied, where the volume of each of the low-melting point layers is represented by A and the area of the top surface of each of the columnar portions is represented by B. Consequently, the low-melting point layer is prevented from trickling on a side surface of the columnar portion during formation of the ball by reflow of the low-melting point layer.