Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Abstract:
An electron beam device has a cathode that generates a fan-shaped electron beam. A first focusing lens includes first and second plates on opposed sides of a filament. The edges of the plates closest to a positively charged anode are arcuate, so that as individual electrons are accelerated normal to the edge of the charged plates, the beam increases in length with departure from the filament. A second focusing lens includes third and fourth plates on opposed sides of the first focusing lens. Each of the third and fourth plates has an arcuate edge proximate to the positively charged anode. The plates of the first and second focusing lenses provide focusing in a widthwise direction, while defining the increase in the lengthwise direction. Preferably, the filament is also curved. In the preferred embodiment, the curvature of the plates of the first focusing lens defines a common radius with the plates of the second focusing lens. The electron beam may be projected from the interior of an evacuated tube and may have a length that is not limited by the length of the filament.
Abstract:
An apparatus for monitoring ion beams with an electrically isolated aperture includes an ion beam source for generating an ion beam and an electrically conductive aperture plate arranged to collimate the ion beam. The aperture plate is electrically isolated from the rest of the deposition apparatus and is divided into a plurality of electrically isolated segments. A current monitoring device has an input connected to the aperture plate so as to monitor current from the aperture plate which is indicative of the ion beam performance.
Abstract:
A network system includes a plurality of terminals classified into a plurality of groups, a network for selectively connecting the plurality of terminals to each other, and a control part for receiving a call indicating one of the groups from a source terminal which is one of the plurality of terminals and for coupling, through the network, the source terminal to a destination terminal which is one terminal included in one of the groups which has an attribute identical to that of the source terminal.
Abstract:
In a beam shaper superpositions of a deformed first diaphragm and a deformed or non-deformed second diaphragm can be realized by means of a quadrupole system. As a result of this a great freedom for adapting the spot cross-section to the patterns to be formed is obtained, as a result of which the number of writing pulses per pattern and hence the writing time for, for example, a chip can be considerably reduced and in particular non-orthogonal and non-linear transistions in the patterns can be written with greater definition.
Abstract:
A system for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprises three successive magnetic deflection means (A,B,C) which deflect the beam alternately in opposite directions, the first (A) and second (B) by angles of less than 50.degree. and the third (C) by an angle of at least 90.degree.; particles with different respective energies are transversely spaced as they enter the third deflection means (C), but emerge completely superimposed in both position and direction, and may be brought to a focus (F) in each of two mutually perpendicular planes a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system, and is suitable for deflecting a beam of electrons from a linear accelerator (5,6,7) so as to produce a vertical beam of electrons (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.
Abstract:
Provided is a device for optimizing a diffusion section of an electron beam, comprising two groups of permanent magnets, a magnetic field formed by the four magnetic poles extending the electron beam in a longitudinal direction, and compressing the electron beam in a transverse direction, so that the electron beam becomes an approximate ellipse; another magnetic field formed by the eight magnetic poles optimizing an edge of a dispersed electron-beam bunch into an approximate rectangle; by controlling the four longitudinal connection mechanisms so that the upper magnetic yoke and the lower magnetic yoke of the first group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate ellipse, and the upper magnetic yoke and the lower magnetic yoke of the second group of permanent magnets move synchronously towards the center thereof thereby longitudinally compressing the electron beam in the shape of an approximate rectangle, and the process of longitudinal compression is repeated until a longitudinal size of the electron-beam bunch is reduced to 80 mm. The invention is capable of reasonably compressing a longitudinal size of an electron-beam bunch after diffusion to approximately 80 mm, which ensures optimum irradiation uniformity and efficiency, and enables the longitudinal size to be within the range of a conventional titanium window.
Abstract:
The method is for automatic astigmatism correction of a lens system. A first image is provided that is not in focus at a first stigmator setting of a set of lenses. A calculating device calculates a corresponding first Fourier spectrum image. A distribution and direction of pixels of the Fourier spectrum image are determined by calculating a first vector and a second vector. The first vector is compared with the second vector. The lens system is changed from a first stigmator setting to a second stigmator setting to provide a second image. A corresponding Fourier spectrum image is calculated. The distribution and direction of pixels of the second Fourier spectrum image is determined by calculating a third vector and a fourth vector. The third vector is compared to the fourth vector. The image that has the lowest vector ratio is selected.
Abstract:
An aberration correction device includes, between a TEM objective lens and an STEM objective lens, a transfer lens group for transferring a coma-free surface of the TEM objective lens to a multipolar lens, a transfer lens group for transferring the coma-free surface of the TEM objective lens to a multipolar lens, and a transfer lens for correcting fifth-order spherical aberration of the STEM objective lens.