Abstract:
The invention relates to a light source (1) with a discharge vessel (12) which is filled with a filling gas, and with an electron beam source (2) which is arranged in vacuum or in a region of low pressure and which generates electrons, propelling the latter through an entry foil (10) into the discharge vessel (12). According to the invention, an electric field can be generated inside the discharge vessel (12).
Abstract:
The invention relates to the use as a luminophor in plasma systems of a compound based on an yttrium, lanthanum, gadolinium or lutecium phosphate doped with at least one rare earth chosen from the group comprising terbium, praseodymium, europium and cerium.
Abstract:
An electronic light radiation tube wherein a cathode and an anode disposed as spaced from each other by a small spacing are housed in an envelope enclosing therein a luminous gas, and a magnetic field is applied to the envelope so as to cause magnetic lines of force of the magnetic field to pass through the envelope, while the magnetic lines of force which have passed through the cathode are prevented from passing through the anode, whereby electrons emitted from the cathode are caused to collide at a high efficiency with the luminous gas throughout the entire interior space of the envelope to excite the gas, and highly uniform light radiation can be realized over the entire envelope.
Abstract:
There is provided a calcium fluoride optical member formed from monocrystalline calcium fluoride and having a tubular shape. A {110} crystal plane or a {111} crystal plane of the monocrystalline calcium fluoride is orthogonal to a center axis of the tube.
Abstract:
This light source 1 is provided with a luminescent cylinder 3A housing a luminescent part 2 to generate light; a light guide cylinder 3B connected to the luminescent cylinder 3A on a one end side, and configured to guide the light generated by the luminescent part 2, to an exit window 4 provided on the other end side; and a cylindrical reflective cylinder 9 inserted and fixed between the exit window 4 of the light guide cylinder 3B and a portion connecting the luminescent cylinder 3A and the exit window 4, and having an inner wall surface as a reflective surface 9a to reflect the light.
Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber and an optical system for collecting plasma radiation.
Abstract:
The invention relates to a light source (1) with a discharge vessel (2) which is filled with a filling gas, and with an electron beam source (4) arranged in vacuum or in a region of low pressure, which source (4) generates electrons (12) and propels them through an inlet foil (8) into the discharge vessel (2). According to the invention, the inlet foil (8) comprises a diamond layer.
Abstract:
The present invention relates to an arrangement for emitting light comprising: a hermetically sealed caving (4) including a transparent or translucent window (10); a layer (3) of a fluorescent substance arranged within said casing covering at least a major part of said window; an electron emitting cathode (1) arranged within said casing for emission of electrons; and an anode (2). Said caving is filled with a has suitable for electron avalanche amplification. Said cathode and anode are, during use, held at electric potentials such that said emitted electrons are accelerated and avalanche amplified in said gas: and said layer is arranged to emit light through raid window in response to being bombarded by avalanche amplified electrons and/or in response to being exposed to ultraviolet light as being emitted in the gas due w interactions between the avalanche amplified electrons and the gas.
Abstract:
An electron emitter (2) has a semiconductor substrate (20) doped with an n-type region (21). A diamond layer (24) is doped by ion implantation with a p-type dopant to form a graded dopant profile region (27) that increases away from the upper surface of the diamond layer (24) and a thin insulating region (28) separating the p-type region (27) from the n-type region (21). The emitter (2) has a first electrical contact (23) on a lower surface of the substrate (20) and a second electrical contact (25) on the upper surface of the diamond layer (24) such that a voltage can be applied across the emitter (2) to cause tunneling of electrons from the n-type region (21) through the insulating region (28) into the p-type region (27), causing emission of electrons from an exposed surface (29). A lamp or display (1) includes several such electron emitters (2) and contains gas at reduced pressure, which is ionized by the emitted electrons, thereby generating UV radiation, which causes a fluorescent layer (5) on a transparent window (3) to produce visible light.
Abstract:
A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.