Abstract:
An improved masking device for optical-type radiations (e.g., infrared visible or ultraviolet) is provided and employed in improved optical apparatus, such as spectrometers, requiring alterable radiation masking. The masking device involves no movable parts, is adapted to operate in a fixed position and has radiation transmission and/or reflection characteristics which are selectively alterable merely by controlling electrical excitation applied to the device. The masking device typically has a plurality of separated and predisposedly offset, coplanar zones of solidified, electrooptically active material carried upon a typically transparent substrate and bounded by areas of an opaque material. The active material may be any of the crystalline or polycrystalline materials which have the property of changing their optical characteristic between being relatively transmissive and being relatively reflective and/or opaque for radiations of the wavelengths of interest, in response to alterations in the magnitude of electrical current passing through the material; for example, diachromic compounds such as vanadium dioxide, certain other transition metal compounds and certain organometallic complex compounds. The masking device can be rapidly altered by electrical control to accommodate computerization techniques and Hadamard transforms or analogous mathematical techniques of spectral analysis.
Abstract:
A novel apparatus for the measurement of color of a sample which comprises an illumination means to illuminate the sample, an electro-optical sensing head to receive the light from the illuminated sample and to output electronic signals and an electronic processing unit to process the signals. The light source may in the preferred embodiment be the sun or the sample itself and a reference optical path is used for reference which is the same optical path as the optical path from the light from the sample. The tristimulus values X, Y, Z and the chromaticity coordinates x, y of the sample with respect to the CIE standards for luminance and chromaticity values are produced for accurate color measurement.
Abstract:
A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.
Abstract:
The slit assembly of the present spectrometer comprises a liquid crystal cell. The electrodes of the cell are selectively actuated for producing a pattern of slits appropriate to the spectral lines of interest in the spectrum derived from the substance under analysis.
Abstract:
A novel apparatus for the measurement of color of a sample which comprises an illumination means to illuminate the sample, an electro-optical sensing head to receive the light from the illuminated sample and to output electronic signals and an electronic processing unit adapted to process the signals. The system uses, in the preferred embodiment, a moving spatial filter to modulate a spectrum and a masking means to selectively mask the light from the modulated spectrum. A reference optical path and reference light signals are produced for subsequent processing with the light from the sample, corrected for any errors produced and processed in an analogue electronic unit to produce the tristimulus values X, Y, Z and the chromaticity coordinates x, y of the sample with respect to CIE standards for luminance and chromaticity values.
Abstract:
In a laser pulse generator, short pulses adjustable in the range between about 0.1 and 0.5 nanoseconds are produced by improved spectral filtering of the output of a gas breakdown switch. The spectral filter in one embodiment is a hot, linearly absorbing gas cell that passes both sidebands of the radiation producing the gas breakdown in the switch and that linearly absorbs the center frequency. A second embodiment uses a tandem dual-slit monochromator as the spectral filter in order to pass both sidebands. The hot gas cell is simpler, cheaper and characterized by a higher rejection ratio than any other alternative to date. It yields very clean pulses with a steeper leading edge than prior techniques. The leading edge is highly reproducible, as needed for nuclear fusion work. The advantage over prior pulsed CO.sub.2 lasers for nuclear fusion work is substantial, since those prior lasers have not achieved pulse durations less than one nanosecond.
Abstract:
A SCANNING INTERFEROMETER OF THE MICHELSON TYPE WHEREIN THE PATH LENGTH DIFFERENCE OF THE TWO INTERFERING BEAMS IN THE INTERFEROMETER IS CONTINUOUSLY VARIED IN A PREDETERMINED MANNER, AND A ROTATABLE MIRROR IS PROVIDED FOR SCANNING OR DISPERSING THE EMERGENT, INTENSITY MODULATED LIGHT SYNCHRONOUSLY WITH THE VARYING PATH LENGTH DIFFERENCE ACROSS A MASK CONTAINING A SERIES OF LINES CORRESPONDING TO A PATTERN PRODUCED BY INTENSITY MODULATED LIGHT OF KNOWN SPECTRAL CONTENT.
Abstract:
A solid-state gas spectrometer for detection of molecules of target gases. An emitter generates light having wavelengths both within and outside of one or more absorption bands of a target molecule. The light provided by the emitter passes through an airway adapter. A reflective beam splitter splits the light transmitted through the airway adapter, into two convergent beams each focused on a light detector. One of the light detectors, which is covered by a filter that rejects light having wavelengths within one or more absorption bands of the target molecule, serves as the sensing detector. The other light detector, which may or may not be covered by a filter, serves as the reference detector. The concentration of a target gas molecule in the gas sample is estimated based on a differential signal that is generated using the signals received from the reference and sensing detectors.