Abstract:
A circuit board (5) is described, consisting of at least two individual circuit board layers (10) made of plastics and produced by formation technique, which each have first and second functional sides and at least one microstructured positioning formation (16) on each of the first and second functional sides and at least one microstructured conductor trench (12) on one of the functional sides, the conductor trench (12) being provided with a metallization (18). This allows a low expenditure production of circuit boards having a high packing density.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conducive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A structure of a conductive bump in a wiring board having a wiring pattern on a surface of an insulating base, characterized in that a local portion of the insulating base is raised from the surface of the insulating base to form a projection and a surface of the projection is covered with a part of a lead forming the wiring pattern to form a conductive bump.
Abstract:
In order to form metallic conductor patterns having connection regions that can be soldered and/or bonded on electrically insulating substrates, firstly a metalization is applied to the substrate and is then removed again, at least in those regions adjoining the desired conductor pattern. There then follows the electrolytic deposition of a final surface which can be soldered and/or bonded to the connection regions. Clean-room conditions are not necessary.
Abstract:
A connector comprising: at least one contact, said contact being formed by a first and a second part, said first part being made of material adapted to be metallized, such that said contact forms soldering surfaces for termination purposes, and wherein between surfaces of the first part, which can be metallized, insulating material is provided by means of said second part so as to achieve an extension of the creeping paths.
Abstract:
A method and apparatus for engaging electrical components to a circuit board. The body of the component has at least one fastener integrally formed therewith. The at least one fastener includes a neck portion engaged to the body of the component and extending to a hook portion. The fastener is configured to reside substantially within a through-hole formed in a circuit board. The through-hole in the circuit board has a solder lining, and the fastener is placed into the through-hole. The solder is reflowed via known soldering techniques so that the hook portion of the fastener is engaged by the reflowed solder, thus engaging the component to the circuit board.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A device includes a chip, and a resin package sealing the chip, the resin package having resin projections located on a mount-side surface of the resin package. Metallic films are respectively provided to the resin projections. Connecting parts electrically connect electrode pads of the chip and the metallic films.
Abstract:
A connector connecting structure capable of smoothly connecting connectors, for example, on a vehicle door trim and on a door panel respectively, even in case of the door trim slantingly approaching the door panel. A projection having a terminal conductor is orthogonally arranged on a substrate and is rotatable about a flexible portion as a supporting point, while a slant guide corresponding to the projection is formed on a connector corresponding to the projection for enabling the projection to be inserted into the connector slidingly and rotatively along the slant guide. Practically, a vehicle door trim functions as a substrate and a connector is provided on a vehicle door panel for enabling a projection on the door trim to be inserted into the connector upon rotative assemblage of the door trim onto the door panel. Further, a projection is formed long into a rig and a connector has a rib insertion space having an opening from the front portion throughout the longitudinal ends and also a plurality of connectors are arranged in a line for enabling the plurality of connectors to be simultaneously connected with the projection.