Abstract:
A method and a surface mount technology (SMT) pad structure are provided for implementing enhanced solder joint robustness. The SMT pad structure includes a base SMT pad. The base SMT pad receives a connector for soldering to the SMT pad structure. A standoff structure having a selected geometry is defined on the base SMT pad to increase thickness of the solder joint for the connector.
Abstract:
A dielectric structure including a metal foil, a dielectric layer and a conductor layer provided in this order, wherein the metal foil has a thickness of from 10 to 40 μm, the dielectric layer has a thickness of from 0.3 to 5 μm, and the conductor layer has a thickness of from 0.3 to 10 μm. The dielectric structure has plural vias which are separated from each other, and which penetrate through both of the dielectric layer and the conductor layer. The vias of the dielectric layer have different diameters which are in a range of from 100 to 300 μm, a diameter of each of the vias of the conductor layer is larger than a diameter of a corresponding via of the dielectric layer by 5 to 50 μm, and a minimum via pitch is from 100 to 350 μm.
Abstract:
A wiring board is formed with a substrate, conductive patterns laminated in the thickness direction of the substrate, multiple pads having a predetermined pitch and formed on the same layer as the conductive patterns, a conductive bonding layer arranged on each of the multiple pads, and an electronic component having electrodes. Here, the electronic component is arranged inside the substrate. The electrodes of the electronic component and the multiple pads are electrically connected to each other by means of bonding layers. Also, the height of each of the multiple pads is greater than the height of the conductive pattern adjacent to each pad. Moreover, a protective material related to the bonding layers is not formed at least on the layer where the pads and the first conductive patterns are formed.
Abstract:
An IC chip for a high frequency region, particularly, a packaged substrate in which no malfunction or error occurs even if 3 GHz is exceeded. A conductive layer is formed at a thickness of 30 μm on a core substrate and a conductive circuit on an interlayer resin insulation layer is formed at a thickness of 15 μm. By thickening the conductive layer, the volume of the conductor itself can be increased thereby decreasing its resistance. Further, by using the conductive layer as a power source layer, the capacity of supply of power to an IC chip can be improved.
Abstract:
A method for manufacturing a printed wiring board includes forming a metal film on a surface of an insulative board, a plating resist on the metal film, and a plated-metal film on the metal film exposed from the plating resist, covering a portion of the plated-metal film with an etching resist, etching to reduce thickness of the plated-metal film exposed from the etching resist, removing the etching and plating resists, and forming a wiring having a pad for wire-bonding an electrode of an electronic component and a conductive circuit thinner than the pad by removing the metal film exposed after the plating resist is removed, a solder-resist layer on the surface of the board and wiring, an opening in the layer exposing the pad and a portion of the circuit contiguous to the pad, and a metal coating on the pad and portion of the circuit exposed through the opening.
Abstract:
A printed wiring board has an insulative board having a first surface and a second surface on the opposite side of the first surface, a wiring formed on the first surface of the insulative board and having a pad and a conductive circuit contiguous to the pad, and a metal film formed on the pad. The pad is provided to mount an electronic component having a gold bump. The pad has a thickness which is greater than a thickness of the conductive circuit.
Abstract:
A multi-layer substrate connecting to an external electric device includes: a plurality of resin films; and a plurality of conductive patterns. The resin films are stacked together with the conductive patterns. The conductive pattern includes an inner conductive pattern and a surface conductive pattern. The inner conductive pattern is disposed inside of the multi-layer substrate for providing an inner circuit. The surface conductive pattern is exposed on the multi-layer substrate for connecting to the external electric device. The surface conductive pattern has a thickness in a stacking direction, which is thicker than a thickness of the inner conductive pattern.
Abstract:
An electrical structure and method comprising a first substrate electrically and mechanically connected to a second substrate. The first substrate comprises a first electrically conductive pad and a second electrically conductive pad. The second substrate comprises a third electrically conductive pad, a fourth electrically conductive pad, and a first electrically conductive member. The fourth electrically conductive pad comprises a height that is different than a height of the first electrically conductive member. The electrically conductive member is electrically and mechanically connected to the fourth electrically conductive pad. A first solder ball connects the first electrically conductive pad to the third electrically conductive pad. The first solder ball comprises a first diameter. A second solder ball connects the second electrically conductive pad to the first electrically conductive member. The second solder ball comprises a second diameter. The first diameter is greater than said second diameter.
Abstract:
Provided are a hybrid integrated circuit device in which fine patterns can be formed while current-carrying capacitances are ensured, and a method of manufacturing the same. The hybrid integrated circuit device of the present invention includes conductive patterns formed on a front surface of a circuit substrate and circuit elements electrically connected respectively to the conductive patterns. The conductive patterns include a first conductive pattern and a second conductive pattern formed more thickly than the first conductive pattern. The second conductive pattern includes a protruding portion protruding in a thickness direction thereof.
Abstract:
A multilayered wiring substrate is constructed by stacking wiring layers 105, 108, 110, 112 and insulating layers 104, 106, 107, 109 in predetermined number, with at least one of the wiring layers being formed as a reinforcing wiring layer 103 whose thickness is 35 to 150 μm arranged in one layer or plural layers. Also, the thickness of the reinforcing wiring layer is larger than that of the other wiring layers.