Abstract:
The present invention generally relates to a new structure to be used with electronic modules such as printed circuit boards and semiconductor package substrates. Furthermore there are presented herein methods for manufacturing the same. According to an aspect of the invention, the aspect ratio of through holes is significantly improved. Aspect ratio measures a relationship of a through hole or a micro via conductor in the direction of height divided width. According to the aspect of the invention, the aspect ratio can be increased over that of the prior art solution by a factor of ten or more.
Abstract:
Three-dimensional structure (40) of the present invention includes first module board (28), second module board (37), and substrate joining member (10) that unifies board (28) and board (37) into one body, thereby electrically connecting these two elements together. The unification is done by molding the outer wall of housing (12) of substrate joining member (10) with resin (29). Substrate joining member (10) used in the three-dimensional structure (40) includes multiple lead terminals (14) made of conductive material, and a frame-shaped and insulating housing (12) to which frame the lead terminals (14) are fixed vertically in a predetermined array. Housing (12) includes projections (18) on at least two outer wall faces of its frame shape.
Abstract:
A multi-layer system-on-chip (SoC) module structure is provided. The multi-layer SoC module structure includes at least two circuit board module layers and at least one connector module layer. Each connector module layer is sandwiched between and thus electrically connects two circuit board module layers such that the SoC module structure is formed by stacking. Each circuit board module layer is composed of at least one circuit board module while each connector module layer is composed of at least one connector module. Hence, the SoC module structure can be manufactured as a three-dimensional structure, thus allowing highly flexible connections within the SoC module structure.
Abstract:
There is provided a wiring board including a multilayer substrate and a reinforcing member. The multilayer substrate has a first main substrate surface formed with a chip mounting area to which an electronic chip is mounted and a second main substrate surface opposed to the first main substrate surface. The reinforcing member is fixed to either an area of the first main substrate surface other than the chip mounting area or the second main substrate surface and has a body predominantly formed of ceramic material and incorporating therein at least one capacitor.
Abstract:
A solid printed circuit board is manufactured by bonding upper and lower printed circuit boards having different shapes and provided with wirings formed on surfaces thereof. A bonding layer is made of insulating material containing thermosetting resin and inorganic filler dispersed therein, and has a via-conductor made of conductive paste filling a through-hole perforated in a predetermined position of the bonding layer. This circuit board provides a packaging configuration achieving small size and thickness and three-dimensional mounting suitable for semiconductors of high performance and multiple-pin structure.
Abstract:
A substrate includes a pair of surfaces opposing to each other in a direction. First electronic components are provided on one surface. Second electronic components lower than a maximum value of the height of the first electronic components in a direction are provided on the other surface. Insulating resin includes a covering part adhering and covering the second electronic components and the other surface, and side surface part extending from the periphery of the substrate to a side of the second electronic components along the direction. A lid covers the first electronic components from an opposite side of the substrate, and is fixed to the side surface part from the opposite side of the substrate.
Abstract:
An electronic unit includes a first circuit board having a power semiconductor device and an electrolytic capacitor and a second circuit board having an electronic component to control the power semiconductor device. The second circuit board is arranged perpendicular to the first circuit board and along the surface of the electrolytic capacitor. The electronic unit further includes a connecting member being jointed at one end thereof to the first circuit board and jointed at the other end thereof to the second circuit board for electrical connection between the first and second circuit boards.
Abstract:
The present invention is provided a structure for mounting a printed board in which each connector that is attached to each of a plurality of sub printed boards, which are juxtaposed to one another with respect to a main printed board secured to a metal backboard, is inserted into each of a plurality of connectors that are juxtaposed to one another on the main printed board so that the sub printed boards are mounted on the main printed board by the connector connections. Parts of both ends of an area in proximity to a semiconductor-device mounted area on each of the sub printed boards ate pinched between a first metal frame and a second metal frame so that each of the sub printed boards are secured.
Abstract:
A method of making a supported foam circuit laminate comprises fitting a dielectric foam substrate having a shape defined by edges to a support frame having a thickness, an inner rim and an outer rim, wherein the edges of the dielectric foam substrate are flush with the inner rim of the support frame, and the dielectric foam substrate has a thickness that is greater than the thickness of the support frame; disposing an electrically conductive layer onto a side of the dielectric foam substrate and the support frame, wherein the edges of the electrically conductive layer overlap the inner rim of the support frame; and co-laminating the electrically conductive layer to the dielectric foam substrate and the overlapped support frame under heat and pressure to provide a supported foam circuit laminate.
Abstract:
A motor vehicle control device includes a housing lid and a base plate that are connected with each other in an oil-tight manner via a frame. An interconnect device with at least one electronic component and/or at least one electrical contact area is arranged on the base plate. Respectively in the area of an electronic component and/or an electrical contact area, the base plate includes a foil conductor strip, of which an end section facing the interconnect device in turn includes an electrical contact area. The frame completely surrounds the interconnect device and includes one opening respectively in the area of an electrical contact area of the foil strip. Via connection lines, the electronics on the interconnect device are electrically connected with the contact area in the opening, and thus with the electronic components outside the control device.