Abstract:
Method for encapsulation of a microelectronic component, including making of a portion of sacrificial material on a front face of a first substrate in which the component is intended to be made, then making of a cover encapsulating the portion of sacrificial material, then making of the component by etching the first substrate from its back face, such that part of the component is arranged to face the portion of sacrificial material and such that the portion of sacrificial material is accessible from a back face of the component, then elimination of the portion of sacrificial material by etching from the back face of the component, then securing of the back face of the component to a second substrate.
Abstract:
The present disclosure provides an embodiment of a micro-electro-mechanical system (MEMS) structure, the MEMS structure comprising a MEMS substrate; a first and second conductive plugs of a semiconductor material disposed on the MEMS substrate, wherein the first conductive plug is configured for electrical interconnection and the second conductive plug is configured as an anti-stiction bump; a MEMS device configured on the MEMS substrate and electrically coupled with the first conductive plug; and a cap substrate bonded to the MEMS substrate such that the MEMS device is enclosed therebetween.
Abstract:
A MEMS structure includes a substrate, an inter-dielectric layer on a front side of the substrate, a MEMS component on the inter-dielectric layer, and a chamber disposed within the inter-dielectric layer and through the substrate. The chamber has an opening at a backside of the substrate. An etch stop layer is disposed within the inter-dielectric layer. The chamber has a ceiling opposite to the opening and a sidewall joining the ceiling. The sidewall includes a portion of the etch stop layer.
Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.
Abstract:
A method for manufacturing microelectromechanical structures in a layer sequence and a corresponding electronic component having a microelectromechanical structure. The method includes provision of a carrier substrate including a first surface, an application of an insulation layer onto the first surface, an epitaxial growth of a first silicon layer onto the insulation layer, a structuring of the first silicon layer for forming trenches in the first silicon layer, a passivation of the first silicon layer, whereby the trenches are filled and a passivation layer is formed on a side facing away from the first surface, a structuring of the passivation layer, sacrificial areas and functional areas being formed in the first silicon layer, and the sacrificial areas are free of the passivation layer, at least at some points, on a side facing away from the carrier substrate, and, finally, removal of the sacrificial areas.
Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.
Abstract:
Suspended structures are provided using selective etch technology. Such structures can be protected on all sides when the selective undercut etch is performed, thereby providing excellent control of feature geometry combined with superior material quality.
Abstract:
An electronic device according to an aspect of the invention include: a substrate; an underlayer having an opening and being formed on the substrate; a functional element provided on the underlayer; and a surrounding wall forming a cavity that accommodates the functional element, at least a part of the surrounding wall being disposed in the opening.
Abstract:
Methods, apparatuses and devices are described where a main wafer is irreversibly bonded to a carrier wafer and thinned to reduce a thickness of the main wafer, for example down to a thickness of 300 μm or below.