Abstract:
A device includes a first substrate formed of a first material and a plurality of electromechanical devices formed upon a surface of the first substrate. The device also includes an integrated circuit (IC) chip bonded to the surface of the first substrate where the integrated circuit chip is formed of a material selected from a group consisting of the first material or a material having a coefficient of thermal expansion (CTE) that is substantially similar to the CTE of the first material.
Abstract:
Integrated Data and Power Cord for use with Modular Display Panels In one embodiment, a display panel includes a plurality of display elements, and image control circuitry coupled to the display elements. A power supply circuitry is coupled to the display elements. A housing encloses the display elements and the image control circuitry. The housing is sealed with respect to external elements. A first integrated data and power cable extends from outside the housing, through a housing wall and electrically connected to the image control circuitry and the power circuitry. A second integrated data and power cable extends from outside the housing, through the housing wall and electrically connected to the image control circuitry and the power circuitry.
Abstract:
A display module for a multi-display device includes an array substrate, connectors disposed on the array substrate and configured to transmit signals for driving the array substrate, a printed circuit board (PCB) electrically connected to the connectors and configured to transmit signals to the connectors, and connecting members that extend through the array substrate and configured to electrically connect the connectors and the PCB.
Abstract:
Systems and methods for the design and fabrication of flexible devices, including high-performance large-area OLEDs, narrow border display panels and lighting panels are provided. Various described fabrication- and design-processes may be used to provide the necessary electrical drive to lighting and display panels. Electrical drive may be provided to one or more row- and column-signals by patterning conductive elements near the panel edge. The electrical elements may further be folded over a region near the panel edge back on itself, such that electrical traces may route around the display edge. This may allow the display active area to be substantially the same area as its viewing area, and furthermore may allow pixels go substantially all the way to the edge of the viewing area.
Abstract:
A flexible circuit film includes a first flexible film, a second flexible film facing the first flexible film, a plurality of wirings arranged between the first flexible film and the second flexible film and extending in a first direction, then bending to extend in a second direction crossing the first direction, and then bending a second time to extend in an opposing direction to the first direction, and a guide film including a material more rigid than the first and second flexible films and arranged on an ends of the first flexible film. The guide film includes a tear-preventing portion overlapping with a bending portion of a shortest one of the wirings while covering portions of an inner edge near inner corners of a U-shaped flexible circuit film.
Abstract:
[PROBLEM] To reduce a time constant of an electric circuit including driving electrodes and detecting electrodes in a display provided with an input device, and reduce a temperature variation ratio of the time constant.[SOLVING MEANS] The display 1 includes driving electrodes COML provided along an X axis direction when seen in a plan view, buffer TFT elements Trb serially connected to the driving electrodes COML, and a plurality of detecting electrodes TDL respectively provided to intersect with the driving electrodes COML when seen in a plan view and aligned in the X axis direction. A temperature coefficient of resistance of a sum of an ON resistance of the buffer TFT elements Trb and a resistance of the driving electrodes COML is negative, each of the specific resistances of the plurality of detecting electrodes TDL is not more than 40 μΩ cm, and each of the temperature coefficients of resistance of the plurality of detecting electrodes TDL is 1×10−3 to 5×10−3K−1.
Abstract:
An apparatus and method wherein the apparatus comprises; a flexible display; a flexible touch sensitive module; and a first flexible coating overlaying the flexible display and a second flexible coating overlaying the touch sensitive module; wherein at least a portion of the touch sensitive module is mounted on the first flexible coating.
Abstract:
A folded micro-wire substrate structure includes a transparent folded flexible substrate having a first side and a second side opposed to the first side. The flexible substrate has a first portion and a second portion adjacent to the first portion of the flexible substrate. The flexible substrate has at least a first fold between the first and second portions so that the first portion is aligned with the second portion in a perpendicular direction. One or more electrical conductors is located in or on the flexible substrate, at least one electrical component is located on or in the flexible substrate in the first portion. At least one optical element is located on or in the flexible substrate in the second portion located so that the optical element directs light to or from the electrical component.
Abstract:
A touch panel module including a touch panel and an electrostatic discharge (ESD) protection circuit is provided. The touch panel includes one or more conductive electrodes and one or more dummy electrodes. The one or more conductive electrodes include at least one of one or more driving electrodes and one or more sensing electrodes. The one or more dummy electrodes are configured to fill areas between the one or more conductive electrodes or areas outside the one or more conductive electrodes. The ESD protection circuit is electrically connected to at least one dummy electrode of the one or more dummy electrodes, and configured to provide an electrostatic discharging path to the at least one dummy electrode. Furthermore, an electrostatic discharging method of the touch panel module is also provided.
Abstract:
Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.