Abstract:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, wherein the dielectric material (328) has a relative dielectric constant greater than 6, and (b) a mezzanine capacitor embedded within the printed circuit board (302).
Abstract:
A power switching device is provided that includes a housing, a printed circuit board disposed within the housing, and a plurality of electrical components mounted to the printed circuit board, including at least one relay. At least one pair of load terminals is connected to the printed circuit board on opposite sides of the relay, and a plurality of heat transfer elements are formed through and in the printed circuit board and are dispersed proximate the relay, around the load terminals, and extending to the peripheral portion.
Abstract:
A high speed socket includes an insulative housing and a printed circuit board body portion. The PCB body portion includes a PCB and surface mount contacts. Each surface mount contact has a first end portion for making contact with an integrated circuit held in the socket and a second end portion for surface mounting to a printed circuit board. The socket's printed circuit board includes AC grounded conductive columns (ACGCC) that extend from a first planar surface of the PCB to a second planar surface of the PCB. The printed circuit board also includes signal conductors. The signal conductors are shielded by the ACGCCs. In one aspect, the socket includes capacitors that are surface mounted to the socket's PCB. In another aspect, the surface mount contacts include self-adjusting solder tails that accommodate PCB warpage.
Abstract:
For electrical backplanes and the like, a power plane adaptation to improve the propagation of high-speed signals through clearances in an embedded power plane is disclosed. In exemplary embodiments, the power plane is segmented in a high-speed connector region, such that a portion of the metal layer that forms the power plane is retained in the high-speed connector region—but isolated from the power-delivery portion of the power plane. The isolated portion is connected to digital ground, and clearances are formed therein where high-speed signaling throughholes will pass through the region. In some embodiments, various attainable advantages include better manufacturability, better matching and control of high-speed signaling throughhole impedance, and improved noise isolation. Other embodiments are described and claimed.
Abstract:
The invention relates to a method for producing a rewiring printed circuit board with a substrate wafer having passage connections between a first and a second surface. One embodiment of the method comprises applying and patterning masking layers on the first and the second surfaces, thereby uncovering a first contact location on the first surface and a second contact location on the second surface; applying a protective layer to the second surface in order to protect the corresponding masking layer and the second contact location during subsequent method steps; applying a first conductor structure to the first surface, the first conductor structure on the first surface covering the first contact location; removing the protective layer on the second surface; and applying a second conductor structure to the second surface, the second conductor structure on the second surface covering the second contact location.
Abstract:
Signal line conductors passing through vertical vias in an insulative substrate for supporting and interconnecting integrated circuit chips are provided with shielding conductors in adjacent vias that link respective power and ground planes. The shielding conductors' presence in positions around a signal via is made possible through the employment of power plane and ground plane conductive grids that are laid out in rhomboid patterns. The power plane and ground plane grids possess a left-right mirror relation to one another and are displaced to place the rhomboid's corners to avoid overlapping any of the grid lines.
Abstract:
The embodiments of the present invention relate to an improved printed circuit board having additional rows of ground vias to reduce crosstalk in the board. A printed circuit board according to one embodiment of the present invention comprises a first row of vias and a second row of vias, each having a plurality of signal vias. The circuit board also comprises a plurality of rows of vias being coupled to a ground plane between the first row of signal vias and the second row of signal vias. According to one embodiment, the plurality of rows of vias being coupled to a ground plane comprise rows of vias having different sizes. Some of the vias are designed to receive a component, while others are generally smaller and designed to provide a return current path for the signal vias.
Abstract:
Processes for fabricating a multi-layer circuit assembly and a multi-layer circuit assembly fabricated by such processes are provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias, these area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; and (c) applying a layer of metal to all surfaces of the substrate. Additional processing steps such as circuitization may be included.
Abstract:
The present invention comprises a processed thin film substrate (10) and a method therefore, in order to produce a flexible printed circuit card, having a plurality of microvias going or passing through the thin film substrate and electrically connected along faced-away surfaces, in order to form an electric circuit. A first a number of real nano-tracks are filled with a first material (M1), having good electric properties, for the formation of a first number of, here denominated, first vias (V10, V30, V 50), that a second number of real nano-tracks are filled with a second material (M2), having good electric properties, for the formation of a second number of, here denominated, second vias (V20, V40, V60). The first material (M1) and the second material (M2) of said first and second vias (V10–V60) are chosen having mutually different thermoelectric properties. A material surface-applied to the thin film substrate, coated on both sides (10a, 10b) of the thin film substrate (10), is distributed and/or adapted in order to allow the electrical interconnection of first vias, allocated the first material (M1), with second vias, allocated the second material (M2), and that a first via (V10) included in a series connection and a last via (V60) included in the series connection are serially co-ordinated in order to form an electric thermocouple (100) or other circuit arrangement.
Abstract:
A wiring board houses a bare radio-frequency IC. Shield wiring films are provided above and below the IC. A plurality of shield interlayer-connection conductor films, i.e., shield via-holes, is provided so as to surround the IC. The shield wiring films and the shield interlayer-connection conductor films define a shield cage, which can electrostatically shield the IC. Thus, there is no need to attach a shield cap.