Abstract:
A MEMS device is disclosed. The MEMS device includes a first substrate. At least one structure is formed within the first substrate. The first substrate includes at least one first conductive pad thereon. The MEMS device also includes a second substrate. The second substrate includes a passivation layer. The passivation layer includes a plurality of layers. A top layer of the plurality of layers comprises an outgassing barrier layer. At least one second conductive pad and at least one electrode are coupled to the top layer. At least one first conductive pad is coupled to the at least one second conductive pad.
Abstract:
Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
Abstract:
CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
Nanocrystalline diamond coatings exhibit stress in nano/micro-electro mechanical systems (MEMS). Doped nanocrstalline diamond coatings exhibit increased stress. A carbide forming metal coating reduces the in-plane stress. In addition, without any metal coating, simply growing UNCD or NCD with thickness in the range of 3-4 micron also reduces in-plane stress significantly. Such coatings can be used in MEMS applications.
Abstract:
An inertial sensor comprising a frame to which at least two seismic bodies are connected by resilient means so as to be movable in a suspension plane, and transducers to keep the seismic bodies vibrating and to determine a relative movement of the seismic bodies relative to one another, characterized in that the seismic bodies have a single shape and a single mass, and in that the seismic bodies comprise interlocking parts such that the seismic bodies are nested inside one another while being movable in the suspension plane relative to the other of the seismic bodies, with the seismic bodies having centres of gravity that coincide with one another. A method for manufacturing such a sensor.
Abstract:
A micro-electro-mechanical system (MEMS) device and a manufacturing method are provided. The device includes top and bottom cap wafers and a MEMS wafer disposed between the top cap wafer and the bottom cap wafer. The top, bottom and MEMS wafers define sidewalls of a cavity. A MEMS structure is housed within the cavity and is movable relative to the top and bottom caps. At least one electrode is provided in one of the wafers, the electrode being operatively coupled to the MEMS structure to detect or induce a movement thereof. A support structure extends through the cavity from the top cap wafer to the bottom cap wafer to prevent bowing in the top cap and bottom cap wafers.
Abstract:
This disclosure provides systems, methods and apparatus including devices that include a layer of passivation material covering at least a portion of an exterior surface of a thin film component within a microelectomechanical device. The thin film component may include an electrically conductive layer that connects via an anchor to a conductive surface on a substrate. The disclosure further provides processes for providing a layer of passivation material on an exterior surface of a thin film component and for electrically connecting that thin film component to a conductive surface on a substrate.
Abstract:
Methods of chemically encoding high-resolution shapes in silicon nanowires during metal nanoparticle catalyzed vapor-liquid-solid growth or vapor-solid-solid growth are provided. In situ phosphorus or boron doping of the silicon nanowires can be controlled during the growth of the silicon nanowires such that high-resolution shapes can be etched along a growth axis on the silicon nanowires. Nanowires with an encoded morphology can have high-resolution shapes with a size resolution of about 1,000 nm to about 10 nm and comprise geometrical shapes, conical profiles, nanogaps and gratings.
Abstract:
A scanning device includes a substrate, which is etched to define an array of two or more parallel rotating members and a gimbal surrounding the rotating members. First hinges connect the gimbal to the substrate and defining a first axis of rotation, about which the gimbal rotates relative to the substrate. Second hinges connect the rotating members to the support and defining respective second, mutually-parallel axes of rotation of the rotating members relative to the support, which are not parallel to the first axis.