Abstract:
The present concept is a portable color sensor for measuring color of a substrate that includes a single flat printed circuit board with a top and bottom side which includes at least one LED light and one color sensor and at least one light pipe receiving light from the LED and transmitting it onto a substrate at an angle theta. It also includes a tube frame including an optical tube for receiving light reflections from the substrate and directing the reflections to the color sensor. The light pipes and the tube frame, are mounted and compression fit between the printed circuit board and a lower housing.
Abstract:
A method for color texture imaging of teeth with a monochrome sensor array obtains a 3-D mesh representing a surface contour image according to image data from views of the teeth. For each view, recording image data generates sets of at least three monochromatic shading images. Each set of the monochromatic shading images is combined to generate 2-D color shading images, corresponding to one of the views. Each polygonal surface in the mesh is assigned to one of a subset of the views. Polygonal surfaces assigned to the same view are grouped into a texture fragment. Image coordinates for the 3-D mesh surfaces in each texture fragment are determined from projection of vertices onto the view associated with the texture fragment. The 3-D mesh is rendered with texture values in the 2-D color shading images corresponding to each texture fragment to generate a color texture surface contour image.
Abstract:
Disclosed are devices and methods for detecting a counterfeit or adulterated products and/or packaging. The device (20) includes a plurality of light sources (28) configured to emit light at a plurality of different wavelengths onto an object, at least two image acquisition devices (34a, 34b) adapted to acquire first and second image data, and first and second imaging displays (36A, 36B) configured to display the first and the second image data, respectively.
Abstract:
An imaging device including a light source; a two-dimensional image sensor that receives reflected light from a subject containing specular light of the light source and outputs an image of the subject; a light transmission member disposed in an optical path of light emitted from the light source to the subject; and a light shielding unit that, when a position on the subject at which light from the light source is regularly reflected and enters the two-dimensional image sensor is defined as a first specular position, whereas a position on the light transmission member at which light from the light source is regularly reflected and enters the two-dimensional image sensor is defined as a second specular position, shields the light directed from the light source toward the second specular position without shielding the light directed from the light source toward the first specular position.
Abstract:
The present concept is a method of preparing an egg to determine the color of the egg using an egg yolk cover. The egg yolk cover is dome-shaped with a base edge and inspection area. The egg yolk cover eliminates ambient light from impinging on the egg yolk and is used in combination with a light sensor to determine the color of egg yolks. The light sensor includes a single flat printed circuit board with a top and bottom side which includes at least one LED light and one color sensor, at least one light pipe receiving light from the LED and transmitting it onto a substrate at an angle theta and a tube frame including an optical tube for receiving light reflections from the substrate. The light pipes and the tube frame are compression fit between the printed circuit board and a lower housing. To determine the color of the egg yolk, the egg is first cracked onto a flat surface. The egg yolk cover is then placed over the egg yolk and the color sensor is placed onto the inspection area to measure the color.
Abstract:
The present invention comprises an optical train (50) and optional wavelength-selective photodetectors. The optical train (50) uses reflecting elements (600) including mirrors and/or prisms to fold the light path of the transmitted UV light beam to direct it through the body (100) of the instrument, through a sample vessel (200) using at least one pass but preferably two or more passes and into illumination contact with a photodetector (400). With each additional pass, the Beer-Lambert path length is effectively increased. Separate second optical train (53) and third optical train (54) exist for the detection and measurement of scattered light by illumination contact with one or more photodetectors.
Abstract:
Embodiments as disclosed herein provide a method and system that characterizes physical properties, such as thickness, uniformity, polarization, and/or sizes and locations of defect (e.g. defect density distribution) of crystalline structures grown on or thin films deposited on a substrate of a solid state light emitting device. The embodiments disclosed herein generally include exciting the light emitting device with an energy source and analyze optical energy emitted by the crystalline structures grown on or the thin films deposited on the substrate.
Abstract:
Systems and methods for generating 3D representations of shape and color texture of a test surface are described. In one aspect, surface topography interferometers are equipped with a multi-element detector and an illumination system to produce a true-color image of the measured object surface. Color information can be presented as a true-color two-dimensional image or combined with topography information to form a three-dimensional representation of the shape and color texture of the object, effectively creating for a human observer the impression of looking at the actual part.
Abstract:
A portable color detector comprises a light source for illuminating a surface of an object; and a light detector for capturing reflected light from the surface of the object and generating RGB analog signals based on the captured reflected light. The portable color detector comprises a processing unit for converting the RGB analog signals into RGB data, and transmitting the RGB data to a portable quality inspection terminal. The portable quality inspection terminal comprises a processing unit for processing the RGB data received from the portable quality inspection terminal. Processing the RGB data comprises transmitting the RGB data to a quality control platform. Alternatively, nominal RGB data are received by the quality inspection terminal, and processing the RGB data comprises comparing the RGB data with the nominal RGB data, detecting a color anomaly based on the comparison, and transmitting the color anomaly to a quality control platform.
Abstract:
An imaging device comprises: a light source; a two-dimensional image sensor that receives reflected light from a subject containing specular light of the light source and outputs an image of the subject; a light transmission member disposed in an optical path of light emitted from the light source to the subject; and a light shielding unit that, when a position on the subject at which light from the light source is regularly reflected and enters the two-dimensional image sensor is defined as a first specular position, whereas a position on the light transmission member at which light from the light source is regularly reflected and enters the two-dimensional image sensor is defined as a second specular position, shields the light directed from the light source toward the second specular position without shielding the light directed from the light source toward the first specular position.