Abstract:
The present invention provides thin-laminate panels (i.e., thin-laminate panels having dielectric layers of about 0.006 inches or less and conductive layers on either side of the dielectric layer), wherein the edges of the dielectric layers of the panels are free of conductive material, such as copper. The thin-laminate panel is designed to provide necessary capacitance for all or a substantial number of the integrated circuits to be formed thereon. The thin-laminate panels of the present invention may be tested for manufacturing defects, such as short circuits, before further processing of the panels to produce PCBs. "Finishing" methods for shearing sheets of unfinished thin-laminate into the finished thin-laminate panels of the present invention in a manner that does not cause smearing of the conductive material onto the dielectric layer are also provided. To assure that conductive material from the conductive layers of an unfinished thin-laminate panel is not smeared onto the edges of the dielectric layer as the panel is sheared, the plane of rotation of a vertically mounted router bit coincides with the plane defined by the surface of the panel. Securing apparatus or fixtures for securing one or more unfinished thin-laminate panels to a surface for shearing of the edges of the panels to produce the finished thin-laminate panels of the present invention are also provided. The securing apparatus allow unfinished panels to be secured to a surface during the finishing process without the need to drill holes through or otherwise diminish the useful area or portions of the panels.
Abstract:
A semiconductor sensor chip such as an acceleration sensor chip and other electronic components such as controlling semiconductor chips are mounted on and connected to conductor patterns formed on a ceramic package. The ceramic package is heated together with a cap to hermetically seal the ceramic package containing the sensor chip and electronic components therein. The conductor pattern formed on the ceramic package is composed of a base film of, i.e., tungsten, an intermediate film of nickel plated on the base film and a thin surface film of gold which is formed on the intermediate film by flash plating. The conductor patterns are also formed at outside portions of the ceramic package. The ceramic package is mounted on a printed board by soldering at portions where the conductor patterns are formed. Though the surface gold film is thin and made at a low cost, it provides an excellent surface of the conductor patterns for securing a good solder wettability and bonding quality.
Abstract:
A multilayer electronic component has a substrate having a major surface with an area which can be utilized for mounting another electronic component thereon, and external electrodes arranged with a small pitch. According to a method of manufacturing multilayer electronic components, the external electrodes can be easily formed, and the characteristics of respective multilayer electronic components in the parent laminate can be measured during manufacture.The parent laminate is formed by stacking a plurality of insulating sheets provided with via holes each having a conductor and internal circuits connected to the conductors. V-shaped slits are formed in one of the major surfaces of the parent laminate to divide the via holes and the conductors respectively filled in the via holes and expose the conductors within the slits. The exposed conductors respectively serve as the external electrodes of each of the multilayer electronic components obtained by cutting the parent laminate.
Abstract:
A tapered thermal substrate for transferring heat generated from a heat source to a heat sink comprising a composite core of parallel layers of thermally conductive fibers, the core having a tapered edge that maximizes fiber end exposure to the heat source or sink. The tapered edge is comprised of at least one angled surface formed by machining the composite core. A copper thermal tab is plated to each angled surface and machined to a desired size and shape to provide a contact surface for the heat source or sink and a means for facilitating transfer of generated heat to and from the fiber ends. A flashing of a thin coating of copper and nickel over the composite core and each copper thermal tab is also provided to environmentally seal the composite core.
Abstract:
A method for electrically connecting planar element substrates (12) to form an array (10) by forming conductive bridges (16) between metal pads (14) located on the surface of array elements (12). These bridges (16) are designed to transmit or receive visual, acoustical or other electromagnetic data and power. The conductive bridges (16) are formed to be nearly coplanar with the planar elements (12) and are made to connect the edges (14b) of pads (14) which are fused to the planar substrate (12). Metal wire (16a), solder (16b-c), a conductive polymer (16d), or a suspension of conductive particles in paste (16e) are used to bridge and electrically connect the pads (14) located on the array elements (12). The bridges (16) have a low profile, occupy a very small area and reduce the need for highly accurate alignment of adjacent substrates (12) within the tiled array (10) before electrical connections are formed. These low profile bridges (16) are especially advantageous in that they allow a protective plastic or similar cover sheet, or a liquid crystal laminate to be surface mounted on the composite array (10) without causing detrimental surface blemishes or ridges. The small area of the bridges (16) greatly reduces the non-transmitting area of the visual display. The bridges (16), being substantially narrower than the pads (14) which they connect, are more likely to connect the intended pads (14) and less likely to "short" pads (14) which are not in accurate alignment.
Abstract:
A method of chamfering the outer peripheral edges of plate members comprises stacking the plate members in face-to-face vertically aligned relation so that for each two adjacent plate members the upper outer peripheral edge of the lower plate member opposes the lower outer peripheral edge of the upper plate member, detecting the boundary between two adjacent plate members in the stack, positioning a rotary chamfering tool in response to detection of the boundary, and moving the rotary chamfering tool relative to the outer peripheral edges of the two adjacent plate members to simultaneously chamfer the upper edge of the lower plate member and the lower edge of the upper plate member. The detecting, positioning and chamfering steps are repeated for each two adjacent plate members in the stack to thereby chamfer both the upper and lower edges of the stacked plate members.
Abstract:
A credit card type small thin rectangular IC Card has a battery and an IC comprising a CPU, a ROM and a RAM mounted on a flexible printed circuit and bonded within an insulative plastic material. The printed circuit of the card has a plurality of electrode terminals exposed in a parallel array along at least one edge of the card which are adapted to engage contacts of a mating socket. The printed circuit terminals are manufactured by coating copper, nickel and gold over polyamide resin and squeeze finishing the leading edge. The mating socket comprises a general U-shaped frame having a U-shaped channel adapted to receive the IC card and having internal recessed contacts adapted to engage the terminals of the IC card. The contacts extend from an exterior surface of the frame for interconnection with the circuits of a mating device. Downwardly projecting portions thereof are bent at least twice in the portion penetrating the bottom of the frame.
Abstract:
A series of first parallel printed contacts extends inward from a beveled first end of a card. Conductors extend over the surface on ends of the contact and are electrically connected together and with large contact terminals at the ends of the parallel series of contacts.A second parallel series of contacts extends inward from the beveled first edge on the second side of the card, and conductors are looped around each other and individually terminate in a triangular array of connectors which extend through the card to make electrical contact with the first conductors on the first surface. Large end contact terminals are provided at ends of the second series of contact. Adhesive-backed covers cover the conductors and connectors and inner portions of the contacts and terminals.The first conductors and second conductors are so arranged that large sections of each conductor in one group of conductors do not overlie conductors on the opposite side of the card. Holes can be punched through the card in selected locations to selectively interrupt conductors on one side of the card without interrupting conductors on the opposite side of the card.
Abstract:
Arrays of first and second electrodes extending in mutual registration on opposite faces of the same substrate to an edge portion thereof are mutually interconnected by a plurality of electrically conductive deposits extending across that edge portion. These conductive deposits are distributed along the edge portion in a pattern including a recurring deposit width smaller than the smallest spacing between any adjacent two electrodes of either of the first and second electrodes, alternating with a recurring deposit spacing smaller than the smallest width of any of the first and second electrodes.
Abstract:
This invention relates to the field of lighting modules employing light emitting diodes (LEDs), and more particularly to LED modules suitable for exposed lens plate luminaires. There is herein provided an LED module having a printed circuit board comprising at least two layers, wherein the interface between two layers at a side surface of the printed circuit board is covered by a protrusion of an optically transmissive cover plate. The same said optically transmissive cover plate is also adapted to cover at least one LED positioned in or on the printed circuit board.