Abstract:
A tracking stage has an optical filter with a free spectral range greater than the maximum mode hop of a tunable laser. The free spectral range is sufficient to determine the wavelength of the laser output after the mode hop. The output is dithered or a quadrature signal is used to determine whether the mode hop is forwards or backwards. In a further embodiment, a second tracking stage with a shorter free spectral range is coupled to the tunable laser to provide enhanced wavelength resolution. Alternatively, the second tracking stage is omitted and the signal of the tracking stage is amplified to enhance wavelength resolution.
Abstract:
A spectrometer configured to extract spectral information from a wavefront. The spectrometer includes a first collection device that includes an adjustable-optical path and configured to collect a first portion of a wavefront; a second collection device configured to collect a second portion of the wavefront; combiner optics configured to interfere the first and second portions of the wavefront at an image plane of the first and second collector devices to form interference patterns at the image plane; and a Fourier transformation module configured to derive spectral information from the interference patterns.
Abstract:
A method and apparatus for measuring bandwidth of light emitted from a laser which may comprise: first and second wavelength sensitive optical bandwidth detectors providing, respectively, an output representative of a first parameter indicative of the bandwidth of the emitted light as measured respectively by the first and second bandwidth detectors, and an actual bandwidth calculation apparatus adapted to utilize these two outputs as part of a multivariable linear equation employing predetermined calibration variables specific to either the first or the second bandwidth detector, to calculate a first actual bandwidth parameter or a second actual bandwidth parameter. The first actual bandwidth parameter may be a spectrum full width at some percent of the maximum (“FWXM”), and the second actual bandwidth parameter may be a portion containing some percentage of the energy (“EX”). The first and second bandwidth detectors may an etalon and the outputs may be representative of a fringe width of a fringe of an optical output of the respective etalon at FWXM. The precomputed calibration variables may be derived from respective three dimensional plots representing, respectively, detector outputs in relation to a calibrating input light with known values of the first and second actual bandwidth parameters.
Abstract:
A method for determining the substitutional carbon content (Cs) of a monocrystalline or polycrystalline silicon sample comprises measuring an absorption spectrum of the silicon sample to be studied and of a reference sample and calculatng a differential spectrum from them, wherein the calculated differential spectrum provides a detection threshold of
Abstract translation:用于测定单晶或多晶硅样品的取代碳含量(℃)的方法包括测量待研究的硅样品和参考样品的吸收光谱,并从其计算差示光谱 ,其中所计算的差分光谱提供<5PPBA C SUB>的检测阈值。
Abstract:
A vertical cavity surface-emitting laser (VCSEL) package useful in interferometry. The present invention comprises methods and apparatuses that allow use of multimode VCSELS, and that provide for wavelength control and stability. The present invention contemplates the use of a defined response element, such as an etalon, in combination with control of the operating environment of the VCSEL to monitor and control the output wavelength of the VCSEL.
Abstract:
A spectral analysis module, including a wavemeter, for a high repetition rate gas discharge laser having a laser output beam comprising a pulsed output of greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having a femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at pulse repetition rates of 4000 Hz and above, is disclosed which may comprise a primary beam-splitter in the path of the laser output laser of the gas discharge laser operative to pass the vast majority of the output beam and to reflect a first small portion of the output beam, the primary beam splitter oriented at an angle to sufficiently reduce the fluence on the primary beam-splitter, and creating overlapping fresnel reflections in the first small portion of the laser output beam; a secondary beam splitter made from a material having a damage threshold sufficiently high to tolerate the fluence created by the overlapping portion of the fresnel reflections in the first small portion of the output laser beam, the secondary beam splitter reflecting the vast majority of the first small portion of the output laser beam and passing a second small portion of the output laser beam; a telescoping optic in the path of the second small portion of the output beam operative to demagnify the second small portion of the output beam onto a first stage diffuser receiving the demagnified second small portion of the output laser beam, the demagnification selected to keep the fluence in the overlapping fresnel reflections in the second small portion of the output laser beam below the damage threshold of the first stage diffuser. The telescoping optic may demagnify a long axis of the second small portion of the output laser beam more than a short axis of the second small portion of the output laser beam, redistributing the fluence of the second small portion of the laser output beam across the first stage diffuser to keep any portion of the first stage diffuser from exceeding the damage threshold for the material from which the first stage diffuser is made. The vast majority of the first small portion of the laser output beam may be reflected into a power detection module. A second stage diffuser may creating a narrow cone of a focused second small portion of the laser output beam before the beam enters an interferometer.
Abstract:
A diagnostic system (24) for a PEM (20) provides optically determined information about the retardance characteristics induced by the PEM (20). The diagnostic system (24) is integrated with the PEM (20) so that the PEM (20) performance may be diagnosed or monitored during operation of the PEM (20). Specifically, the diagnostic system (24) is used alongside an optical setup (22) that employs a primary light beam (28) for conventional purposes such as polarimetry, optical metrology, etc. The diagnostic system (24) includes its own diagnostic light source (50) that is directed through the optical element (32) of the PEM (20) at a location remote from the primary aperture (38) of the PEM (20). Thus, the diagnostic system (24) and the primary PEM (20) operation can be undertaken simultaneously, with one not interfering with the other. The output of the diagnostic system reflects the actual retardance characteristic provided by the PEM (20) and can be used as feedback to adjust the PEM control as needed.
Abstract:
Method and apparatus for providing an imaging attenuated total reflection (ATR) spectrometer which provides faster measurement speed and better spatial resolution than systems collecting an equivalent amount of data using conventional, non-imaging ATR methods and systems. Apparatus includes a radiation source, an interferometer coupled to the radiation source which produces a spectrally-multiplexed input beam of radiation, an internal reflection element (IRE) engaging a sample-under-test, a focal plane array detector, a first optical system adapted and positioned to direct and concentrate the input beam through the rear surface of the IRE towards a contact area of the sample such that an angle of incidence of said input beam at the front surface is equal to or greater than the critical angle for the IRE, and a second optical system adapted and positioned to collect reflected radiation from the contact area and image the same onto the focal plane array detector.
Abstract:
An apparatus uses reflectance spectrophotometry to characterize a sample having any number of thin films. The apparatus uses two toroidal mirrors in an optical relay to direct light reflected by the sample to a spectroscopic device. A computer then analyzes the reflected spectrum to characterize the optical properties of the sample. The optical relay allows a range of angles of reflection from the sample, and has no chromatic aberration. The optical relay is also arranged so that the non-chromatic aberration is minimized. For polarization-based measurements polarizing elements can be used in the apparatus and the spectroscopic device can be a spectroscopic ellipsometer. The sample is mounted on a movable stage so that different areas of the sample may be characterized. Furthermore, a deflector and a viewer are used to allow the operator of the apparatus to view the region of the sample under study.
Abstract:
A stage for an infrared spectroscope has a focusing body and a sampling element spaced apart by a mounting fixture. The focusing body and sampling element optically cooperate by transmission and internal refraction and reflection to focus an infrared beam on a sample surface and to collect the beam for analysis after it was reflected from the sample surface. The sampling element is made of a durable material and can be removably mounted in the fixture.